
OBJECT MIGRATION IN A CLASS-BASED

OWNERSHIP ENVIRONMENT

A THESIS

Submitted by

D.S. PRADEEP KUMAR

in fulfilment for the award of the degree

of

MASTER OF SCIENCE (BY RESEARCH)

FACULTY OF INFORMATION AND

COMMUNICATION ENGINEERING

ANNA UNIVERSITY CHENNAI

CHENNAI - 600 025

JUNE 2009

 ii

ANNA UNIVERSITY CHENNAI

CHENNAI - 600 025

BONAFIDE CERTIFICATE

 Certified that this thesis titled “OBJECT MIGRATION IN A

CLASS-BASED OWNERSHIP ENVIRONMENT" is a bonafide

work of Mr. D.S. PRADEEP KUMAR, who carried out the research

work under my supervision. Certified further, that to the best of my

knowledge the work reported herein does not form part of any other

thesis or dissertation on the basis of which a degree or award was

conferred on an earlier occasion on this or any other candidate.

Place : Chennai 600 025 Dr. SASWATI MUKHERJEE

Date : (SUPERVISOR)

 Assistant Professor

 Department of Computer Science and

 Engineering

 College of Engineering

 Anna University

 Chennai 600 025.

 iii

ABSTRACT

A widely followed approach for designing a secure, structured

environment is by using a combined technique of static typing and

modularity. In practice, programmers mostly prefer class-based programming

languages like C++, Java, etc., for designing such an environment.

Class-based languages are good in (1) Encapsulation, which helps

in separating components of composite objects and hence components can be

accessed only by feature calls to these composite object, (2) Class inheritance,

which helps in modifying the implementation being reused from the parent

classes.

On the other hand, the approach for designing dynamic evolution

environment is object composition, an alternative to class inheritance, where

new functionality is obtained by assembling or composing objects to get more

complex functionality.

In object-oriented programming languages, aliasing is considered

as a major problem, which permits unauthorized access to the data structure

nodes. Thus aliasing breaks encapsulation and information hiding principle of

object oriented programming environment. In this thesis, ownership is used

for encapsulation. In ownership encapsulation model, the owner gives a

logical boundary specifying how communication should take place between

objects inside the owners’ encapsulation boundary and objects outside the

 iv

owners’ boundary. In particular, ownership allows one to confine an object

inside a data structure and to prevent representation exposure through leaking

thereby solving the problem of aliasing between ownership contexts.

This, we expect, will help in mapping the flux of the real world

under the technique of secure programming where both encapsulation and

object composition will be provided. This thesis exploits the concepts of

ownership types along with object migration to provide for such an

environment.

 v

ACKNOWLEDGEMENT

 I express my profound gratitude to my revered supervisor

Dr. Saswati Mukherjee, Assistant Professor, Department of Computer

Science and Engineering, CEG, Anna University, Chennai, for her valuable

guidance, suggestions, constant support and tireless efforts to complete my

research work.

 I would like to thank Dr. C. Chellappan, Head, Department of

Computer Science and Engineering for their kind cooperation to carryout the

research work at Anna University Campus.

 I wish to thank my Monitoring Committee members

Dr. T.V. Geetha, and Dr. C. Pandurangan for their remarkable suggestions

and motivation in this work.

 I thank my beloved parents, brothers, sisters, relatives and friends

for their moral support and encouragement to complete this research work

successfully.

D.S. PRADEEP KUMAR

 vi

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

 ABSTRACT iii

 LIST OF FIGURES ix

 LIST OF SYMBOLS AND NOMENCLATURE xi

 1 INTRODUCTION 1

 1.1 PROGRAMMING METHODOLOGY 1

 1.2 TRADITIONAL SOFTWARE DESIGN

 QUALITY 2

1.3 PRESENT OBJECT ORIENTED

PROGRAMMING METHODOLOGIES 5

 1.3.1 Class-based Languages 6

 1.3.2 Object-based Languages 9

 1.3.3 Observations 10

 1.4 OWNERSHIP TYPE ENCAPSULATION

 MECHANISM 11

 1.5 OWNERSHIP TRANSFER 12

 1.6 THESIS FOCUS 14

 1.7 OUTLINE OF THE DISSERTATION 15

 2 RELATED WORKS 16

 2.1 INTRODUCTION 16

 2.2 CLASS VS PROTOTYPES 18

 2.3 OWNERSHIP TYPES 22

 2.4 OWNERSHIP TRANSFER 26

 2.5 DYNAMIC OBJECT-BASED DESIGN 27

 vii

CHAPTER NO. TITLE PAGE NO.

 3 OWNERSHIP TRANSFER IN A CLASS-BASED

OWNERSHIP LANGUAGES 30

 3.1 INTRODUCTION 30

3.2 THE DOMINANT OWNERSHIP DOMAIN 30

3.2.1 Object Migration 33

 3.3 CLASSES, OBJECTS AND DOMINANT

 OWNERSHIP ENVIRONMENT 35

 3.3.1 The Standard Storage Model 36

 3.3.2 The Reference Model 37

 3.3.2 Classes, Object and Owner

 Encapsulation 40

 3.4 SCENARIO 41

 3.5 CONCLUSION 43

 4 THE OWNERSHIP TRANSFER PROBLEMS

 AND SOLUTION 45

 4.1 INTRODUCTION 45

 4.2 MULTIPLE-CLASS AND

 ENCAPSULATION BREACH 45

 4.3 EXISTENCE OF DANGLING POINTER 47

 4.4 THE OWNERSHIP TRANSFER

 MODEL (OTM) 48

 4.4.1 The Ownership Transfer Model: Structure 51

 4.4.2 OTM Approach to Dangling Pointer and

 Multiple-Class Problems 52

 4.5 ANALYZING THE SOLUTION 56

 4.5.1 Multiple-Class Existence 57

 viii

CHAPTER NO. TITLE PAGE NO.

 4.5.2 Dangling Pointer Problem 58

 4.6 CONCLUSION 60

 5 THE JMIGRATE (Jm) LANGUAGE 61

 5.1 INTRODUCTION 61

 5.2 TYPE MODIFIERS 61

 5.3 OBJECTS WITHIN OWNERS BOUNDARY 62

 5.4 ANTICIPATED OWNERS 64

 5.5 UN-ANTICIPATED OWNERS 65

 5.6 JMIGRATE TYPES 66

 5.7 INHERITANCE AND SUBSUMPTION

 PROBLEM 68

 5.8 MULTIPLE-CLASS PROBLEM 71

 5.9 DANGLING POINTER PROBLEM 73

 5.10 CONCLUSION 75

 6 THE FORMAL DEFINITION 76

 6.1 INTRODUCTION 76

 6.2 SYNTAX 76

 6.3 EVALUATION 81

 6.4 VISIBILITY RULE 82

 6.5 PROPERTIES 87

 7 CONCLUSIONS 91

 REFERENCES 92

 LIST OF PUBLICATIONS 101

 VITAE 102

 ix

LIST OF FIGURES

FIGURE NO. TITLE PAGE NO.

3.1 Dominant ownership domain 32

3.2 Object Migration 34

3.3 Reference Model - capturing Classes,

Objects, Owners and Neighbors

representation in class-based ownership type

systems 38

3.4 Scenario showing Object Migration 42

3.5 Reference Model of the Scenario 45

4.1 Scenario showing breaching effect due to

Multi class existence 46

4.2 Scenario showing breaching effect due to

dangling pointer existence 48

4.3 The Presence of Aliasing in a Class-Based

Programming Environment 50

4.4 The Reference Diagram Representing the

Aliasing Properties 54

4.5 Aliasing Properties for Objects 55

4.6 Multi class existence 57

4.7 Dangling pointer existence 59

5.1 Subsumption Problems 70

6.1 Syntax of Jmigrate 77

6.2 Field and Method Lookup in Jmigrate 78

6.3 Field and Method Lookup in Jmigrate 79

 x

FIGURE NO. TITLE PAGE NO.

6.4 Method Body Lookup in Jmigrate 80

6.5 Method Overriding in Jmigrate 81

6.6 Judgments in Jmigrate 82

6.7 Owner Visibility 83

6.8 Type and Term Visibility in Jmigrate 84

6.9 Class and Method Type in Jmigrate 87

 xi

LIST OF SYMBOLS AND NOMENCLATURE

∆ - Delta

Γ - Domain

Jm - Jmigrate

κ - Kappa

OTM - Ownership Transfer Model

θ - Theta

1

CHAPTER 1

INTRODUCTION

1.1 PROGRAMMING METHODOLOGY

 Every programming environment can be classified into two

depending on software engineering and security concern. The software

engineering concentrates on building large software system that maps the real

world situation. Their focus is mainly on separation of concern and

reusability, thereby helping in the development of independent modules and

sharing components. Separation of concern is a powerful abstraction

mechanism that helps in analyzing problems within separate context. The

concept of reusability helps in developing independent reusable component

that can be easily used in more than one context. On the other hand, security

mechanism segregates the runtime environment into domains, where granting

permissions or other means of access control policies can facilitate secure

inter and intra domain accesses. However, in general, it becomes important to

choose a proper programming language environment to map the real world

concepts into practice. It is observed that the current object-oriented language

environment reveals an apparent dichotomy between class-based

programming language system and prototype-based programming language

system. These classic mechanisms differ significantly in flexibility,

robustness, and in providing safety guarantees.

 A real-world entity is modeled by a single object, which is assigned

to a class when it is created. Each object in a class has exactly the same set of

variables and methods. An object cannot individually define other variables or

2

methods, nor can it change the way in which variables and methods are

inherited from other classes. One consequence of this approach is that all

members of a class have a uniform structure. Thus the objects in a class can

be stored efficiently through a shared representation, and the set-oriented

access of class members is made more efficient. Parallel processors can also

take advantage of this uniform structure, further enhancing efficiency. This

efficiency becomes increasingly important as classes contain larger numbers

of objects.

1.2 TRADITIONAL SOFTWARE DESIGN QUALITY

 A fundamental goal of software design is to structure product in

order to reduce the complexity of interconnections between modules. Hence,

for that purpose, designers follow different criteria that allow them to reduce

the complexity and mutual dependencies between cooperating parts of the

code. The software design qualities used traditionally for this purpose are

coupling and cohesion as given by Stevens et al in (Stevens et al 1974).

 Coupling refers to the interrelated aspects of different parts of code

and it is desirable to have coupling at its minimum. When the system has high

coupling, one module modifies or relies on the internal workings of another

module. On the other hand, in case of low coupling modules are not

dependent on each other; instead they use a public interface to exchange

parameterless messages (or events).

 Whenever we make one object dependent on another for its

operations - or one system dependent on another for its operations - they are

coupled. One problem with coupled systems or objects is that, rather than

using defined public interfaces, when one object looks inside of another

object for its operation, changes in the internal operation of that object can

make the other object operate incorrectly.

3

 Cohesion describes relatedness of the steps that the designer puts

into the same module. Cohesive implies that a certain class performs a set of

closely related actions. Lack of cohesion, on the other hand, means that a

class is performing several unrelated tasks. Cohesion and reusability are

studied in detail in (Bieman and Kang 1995). Bieman and Byung-Kyoo Kang

treat the method and instance variable class components as the key class units

that may or may not be connected. A method and an instance variable are

related by the way that an instance variable is used by the method. Two

methods are related (connected) through instance variable(s) if both methods

use the same instance variable(s). Using this orientation, class cohesion can

be measured by the relative connectivity (through instance variables) of the

methods.

 Class cohesion refers to the relatedness of visible components of

the class which represent its functionality. Class cohesion is the measure of

the degree of relatedness of these components. Thus it becomes clear from the

above context that, in a highly-cohesive system, code readability and the

likelihood of reuse is increased, while complexity is kept manageable.

 There are various levels of coupling and cohesion. In practice, it

may be difficult to decide exactly which levels of coupling or cohesion are

exhibited by various segments of a system. Nevertheless, the concepts of

coupling and cohesion provide a valuable intellectual framework for thinking

about software modules and software modularity.

 Improving software design quality implies making program

modules more independent, making code more self-documented, and making

the intent of the designer easily understood. The two characteristics,

maintainability and reusability, are the most important characteristics of

software quality. In the context of object-oriented (OO) software

development, combination of data and operations is represented in larger units

4

called a class. In OO scenario, cohesion means relatedness of the public

functionality of a class whereas coupling stands for the degree of dependence

of a class on other classes in the same OO system. An improvement over

cohesion and coupling measures of modular design is achieved in object

oriented scenario based on “information hiding and encapsulation”.

 Encapsulation means that the components of a composite object

cannot be modified except by feature calls to the composite object, or by calls

from the composite object to its components. Encapsulation limits and

controls aliasing and interference, thereby simplifying reasoning and

improving understanding of the object-oriented environment. Information

hiding, on the other hand, means that the components of a composite object

and their states cannot be accessed by clients. Information hiding limits and

controls the dependence of clients on the suppliers’ (composite objects’)

internal representation, thereby localizing the effects of changing this

representation during system maintenance (Kent and Maung 1995).

 A program with high cohesion and low coupling exhibits good

encapsulation. In other words, encapsulation is the goal achieved when we are

able to reduce coupling. A class with good encapsulation, in turn, lends itself

to being cohesive.

 Object-oriented programming has two main objectives: to maintain

loose coupling between the classes and to build highly cohesive classes. High-

cohesion means well-structured classes and loose coupling means more

flexible, extensible class.

 Following subsection discusses the object-oriented approaches by

highlighting their various advantages.

5

1.3 PRESENT OBJECT-ORIENTED PROGRAMMING

METHODOLOGIES

 In the global computing scenario, the programming mechanisms

can be classified under the following two key properties: secure, structured

environment, and dynamic evolution environment.

 A widely followed approach for designing the secure, structured

environment is by using a combined technique of static typing and

modularity. In practice, programmers mostly prefer class-based programming

languages like C++, Java, etc., for designing such an environment.

 Observations in favour of class-based languages are:

1. Encapsulation (which combines typing and modularization

techniques) is strongly supported in static languages than in

dynamic languages (Stein et al 1988)

2. Class inheritance (also called implementation reuse or white-

box reuse as defined by (Gamma et al 1994)) helps modify the

implementation being reused from the parent classes

 However, the problem with the class inheritance is its static nature,

which makes the inheritance hierarchy to be fixed for the lifetime of object

and hence cannot be changed during run-time.

 On the other hand, the approach for designing dynamic evolution

environment is object composition, an alternative to class inheritance, where

new functionality is obtained by assembling or composing objects to get more

complex functionality. Object composition helps in designing environments

with changing or unknown requirements or one that interacts with other

systems that change unpredictably (Gamma et al 1994).

6

 An observation in favor of object composition is:

 It has the ability to facilitate anticipated (when entity relationships

are statically known) and unanticipated (when entity relationships can be

updated dynamically) evolution environment by changing the behavior being

composed at runtime (Gamma et al 1994, Kniesel 1999).

 The following two sections discuss in greater details the properties

of class-based and object-based programming languages.

1.3.1 Class-based Languages

 Class-based languages, as the name suggests, are based on classes.

In this language model, classes are the fundamental building blocks of

objects. In class-based programming languages, the objects can be

distinguished into two kinds: classes and instances of classes (a.k.a. objects).

A class itself doesn't do anything - it is a blueprint, a general description of

objects to be created from that class. Once a class is instantiated, objects are

obtained. Although the variables and methods (also called as signature or type

or an interface describing how to use the class), that an object must have is

defined by their classes, each object vary from each other in the values of

these variables, also called the object's state or instance variables.

 The instances of a class are the objects created from the classes.

Objects are behavioral units that a programmer can manipulate in order to

achieve the intended behavior. Object creation is usually done either by

calling a new method of the class (e.g. in Smalltalk) or by using the new

operator in conjunction with a constructor method of the class (e.g. in C++

and Java). More precisely, new allocates an attribute record and returns a

reference to it. The attribute record contains the initial values and the method

code specified by the class. Objects are constructed of fields and a set of

7

methods to manipulate those fields. An object, IP phone for example, might

have fields like phone number, person name, detail status, service provider,

etc. and methods such as dialing using name/ID, call transfer, call hold,

conference, and multiparty call. An object's state at a certain point in time is

the set of values of its variables.

Inheritance

 In class-based languages only the class is the reusable part. The

class anticipates the structure of the objects generated from the class. This

anticipation makes the class-based languages more static. The user defines

new classes of objects. The class acts as types for the objects.

 A class can inherit behavior from another class, which is called its

superclass. Inheritance is the sharing of attributes between a superclass and its

subclass. By subclassing a class, the new class automatically inherits its

behavior from the superclass, but it can add its own behavior on top of this. It

can also override the inherited features if it so wishes. As an example, class

IPv6 might inherit behavior from class IPv4, but can add new features in the

new class. Both classes will therefore share many features, but the class IPv6

will have more functionality than IPv4. The notion of subclass and

inheritance is a very important concept. Thus subclass is a vehicle that

describes incrementally the extensions and changes to its superclass.

 A class can have infinitely many subclasses, which can in turn be

subclassed. This creates a hierarchy of classes, a taxonomy starting from the

topmost class or classes and expanding like a tree. A subclass is said to be

more specific, while the generic description can be found in the superclass. A

language can have one class from which all classes must initially be

subclassed (e.g., the Object class in Java). This results in a taxonomy where

there is only one tree.

8

Subsumption

 Subsumption is the ability to use a subclass object where an object

of its superclass is expected. As all subclasses of a given class share the same

methods and fields, i.e. the same type, similar behavior can safely be

accepted. The opposite is not possible, since the superclass does not

(necessarily) have all the same methods and fields. If a class IPv4 defines a

method network_address, then any subclasses of it, e.g. IPv6, will have

network_address and hence an object of a class IPv6 can be used where an

object of the class IPv4 is expected. An IPv6 packet is thus subsumed by an

IPv4 packet.

 The major advantage of the class-based approach is its class-based

static type mechanism, the encapsulation model and inheritance mechanism.

Static typing is helpful in compile time analysis for errors, and encapsulation

is a technique for minimizing interdependencies among separately-written

modules by defining strict external interfaces (Snyder 1986). A class is

encapsulated if the access to the internal state of the class or its objects is

restricted by the definition of the programming language. Such accesses can

be made only via the defined external interface. Encapsulation has many

advantages in terms of improving the understandability of programs and

facilitating program modification. Minimizing the exposure of

implementation details in the external interface provided will maximize the

advantages of encapsulation. Inheriting the superclass methods and instance

variables helps in reusing the classes.

 As a general philosophy, static typing ensures that well-typed

programs help in detecting programming mistakes early and hence has fewer

bugs. In addition, the modularity helps in dividing the environment

conceptually into manageable parts, each of which owns separate internal

9

resources. The inheritance helps in static reusability of the software at the

level of classes.

1.3.2 Object-based Languages

 The object-based languages, also called prototype-based language,

evolved in Lisp, Smalltalk, and artificial intelligence communities. The

philosophy of object-based language is to satisfy the extreme flexibility in

deciding the object hierarchies. This ensures that an object can evolve

dynamically by modifying its lookup path and hence are not fixed as done in

class-based inheritance (Borning 1986) (Lieberman 1986). As a consequence,

little attention has been given in designing typed object-based languages.

Some recent languages like Emerald (Hutchinson 1987), Cecil (Litvinov

2003) and Omega (Blaschek 1994) are the simple typed object-based

languages.

 The distinction between classes/instance is not needed if the

alternative of using prototypes is adopted (Lieberman 1986). A prototype

represents the default behavior for a concept, and new objects can reuse part

of the knowledge stored in the prototype by indicating how the new object

differs from the prototype. In class-based approach, the class objects must be

created before their instances can be used, and behavior can be associated

only with classes. Inheritance based on classes fixes the communication

patterns between objects at instance creation time itself. Designing a system

representing knowledge incrementally and dynamically modifying concepts is

one of the advantages of the prototype-based approach.

 Reuse at the object level needs behavior to be shared between

objects that already exist. The disadvantage of object-based language is that it

does not have the facility of encapsulation that is provided in the class-based

languages, or support in a limited manner.

10

1.3.3 Observations

 When specifying and reasoning about real world entity modelling

like web development, network programming, AI Robotics, etc, we need both

dynamic change in behavior as well as secure structured environment. In such

design environment, it is reasonable to expect both class composition (a.k.a.

class inheritance) and object composition in a single programming model to

map the flux of the real world (object composition) within a secure language

property (encapsulation).

 However, most of the widely used general purposes object oriented

languages like C++ and Java lack the above mentioned flexibility. Attempts

to merge the two widely recognized properties have led to weak support either

by restricting the users with some form of anticipation or with rigid coding

convention (Kniesel 2000, Kniesel 1999).

 It is desirable that both encapsulation and object composition be

provided to map the flux of the real world under the technique of secure

programming. This presents a great challenge for the research world to

combine class-based techniques such as encapsulation and inheritance, with

prototype based technique such as object composition. Encapsulation

mechanism fixes the call graphs and encapsulation policies (method

implementation) and on the other hand in the case of dynamic object

composition we can not determine the encapsulation policies.

 In object-oriented programming languages, aliasing is considered

as a major problem (Minsky 1996), which permits unauthorized access to the

data structure nodes. (Noble et al 1998) forms the basis for ownership model.

In the ownership model (Clarke et al 1998, Clarke and Drossopoulou 2002,

Boyapati 2003), the owner gives a logical boundary thereby specifying how

communication should take place between objects inside the owners’

11

encapsulation boundary and objects outside the owners’ boundary. In

particular, ownership allows one to confine an object inside a data structure

and to prevent representation exposure through leaking thereby solving the

problem of aliasing between ownership contexts. This has motivated us to use

ownership type for encapsulation. However, since ownership fixes the owner

of an object for its lifetime and is static, it cannot be changed dynamically. To

map the requirements of change in the real world dynamically, we also use

object migration or ownership transfer.

 Before discussing the focus of our thesis in subsection 1.6, we

discuss the ownership type and ownership transfer in the next two

subsections.

1.4 OWNERSHIP TYPE ENCAPSULATION MECHANISM

 Ownership type is one of the recent techniques that enforces notion

of object-level encapsulation (Clarke et al 1998, Clarke and Drossopoulou

2002). In ownership type every object has an owner. The owner is either

another object or the predefined constant world for objects owned by the

system.

 An ownership context represents a set of objects with the same

owner. There is also a root ownership context, which is the set of all objects

that have no owner. Each object thus belongs to exactly one ownership

context. The contexts form a hierarchy, with the root ownership context at the

top.

 Aggregate objects are containment constructs that group other

objects organized in some manner (Clarke 2001). Ownership types forms an

aggregate of objects with owner-as-dominator property. Aggregates typically

12

support operations to access individual members, and to iterate over all

members, as in queries.

 The ownership types enforce the property called the owners-as-

dominators, where that objects are encapsulated by their owners. The

domination property says that every path from the root to an object will pass

through its owner in the object graph. The ownership type systems are used to

structure the object store into contexts and to restrict references between

contexts. Thus it forms a logical boundary which protects internal objects

from direct accesses from outside objects. As a result, objects with the same

owner object X are in one context, Γ, and X is called the owner of Γ.

 The ownership containment is termed as the property where an

object is considered to be inside its owner. The ownership gains a strong

notion of encapsulation, by preventing access to an object from objects

outside its owner and thereby giving encapsulation at the object reference

level. This is also called as per-object based encapsulation.

 However, the exception with the ownership is its static property,

where the owner is fixed for the entire lifetime of an object. Static ownership

has the advantage of static predictability of the runtime object graph and

hence can be proved safe for runtime deployment. However, they have the

disadvantage of fixed ownership for life time of the object. This does not

allow the flexibility of object composition.

1.5 OWNERSHIP TRANSFER

 Ownership transfer is an important property to map the flux of the

real-world entity modeling, but problematic issue which forms a new

spectrum of research at present.

13

 Some ownership type systems such as SafeJava (Boyapati and

Rinard 2004) support ownership transfer based on unique variables (Boyland

and Retert 2005). However, the existing ownership types do not provide any

facilities to change the owner of an individual object in unanticipated manner.

Instead it supports transfer of externally unique object (Clarke and Wrigstsad

2003) which will transfer context of the owner instead of individual per-

object based.

 Ownership transfer has many applications.

 The owner of an object is first determined when the object is

created, yet an object needs to be changed transferred from one owner to

another. The need for this ownership transfer is illustrated by the following

examples:

1. Merging data structures: data structures such as lists are merged

efficiently by transferring the internal representation of one

structure to the context of the other

2. Work flow system: tasks in work flow systems are transferred

repeatedly from processor to processor.

3. Object initialization: constructors often take an existing object

as parameter and then capture this object, that is, transfer the

ownership to the object being constructed. A special case of

object initialization is the Factory pattern, where product objects

are created in the context of a global factory and then

transferred to the client.

 However, to make ownership systems to be practical, they must

allow objects to transfer ownership from one owner to another.

14

1.6 THESIS FOCUS

 The discussion of traditional technique suggests that an ideal

software engineering model should have all the qualities of both class-based

and object-based design. This way we can avoid the overhead in deciding the

language to be used for designing any specific applications. With the

consolidation of the broad language model, the dynamic state can be predicted

easily during static checking itself.

 The main focus of this thesis is that ideas and advantages from both

the class-based world and prototype-based world be used in programming

languages to ensure that both the properties of the software engineering are

made available in programming languages, without sacrificing the security

and flexibility of either language model. This is achieved under the name of

object migration where an object can dynamically move from one specialized

ownership domain to another related ownership domain at runtime, thereby

facilitating structural evolution and behavioral evolution. Structural evolution

refers to changes in class relations, while behavioral evolution refers to the

dynamic variations of behavior an object may exhibit.

 Thus, object migration helps the movement of objects from one

environment to another dynamically. This change in the environment

dynamically will help in modifying the lookup hierarchy, identity, and the

encapsulation properties of an object. We propose to use a combination of

ownership with ownership transfer to obtain such an environment. We also

look at the problems and use mechanism to avoid some of the security

breaches which may happen in object migration like dangling pointer and

multiple-class effect. Dangling pointer is the problem of having unknown

reference to an object location even after the object is physically removed

either by garbage collection or moved physically, and multiple-class problem

is the problem associated with class-based language model where classes are

15

the shared entity for every objects of that class and hence object migration

will create side-effects in both these cases.

 To this end, we propose a model. Our proposed model, namely

Ownership Transfer Model (OTM) exploits this combination and shows how

to achieve the flexibility of prototype-based systems without abandoning the

advantages of the class-based paradigm along with possibilities of solution of

above mentioned problems. The evidence of safety in OTM has been

illustrated using a language called Jmigrate (Jm), which is based on the

Featherweight Java (FJ) (Igarashi et al 2001).

1.7 OUTLINE OF THE DISSERTATION

 The thesis is organized as follows:

 The Chapter 1 details about the motivation behind this research

followed by related research survey in the Chapter 2.

 The concept of ownership transfer and type specifications has been

dealt with in Chapter 3, which provides a reference model to represent

ownership types in a class-based programming language and its encapsulation

properties.

 Following this, the problems associated with class-based ownership

types and the ownership transfer are detailed in Chapter 4. Chapter 5

illustrates the proposed model through the design of a new language named

Jmigrate (Jm), which is followed by formal definitions in Chapter 6.

 Finally, in Chapter 7, we summarize the contributions of this

dissertation and suggest some future directions for research.

16

CHAPTER 2

RELATED WORKS

2.1 INTRODUCTION

 Change and diversity are intrinsic to the real world which

continually evolves in ways that cannot be anticipated.

 Often the requirements that a system must meet can change in fully

unanticipated ways due to a variety of possible factors ranging from

company-internal decision to new legislation. Unanticipated requirements

change lead to unanticipated behavior evolution. Such changes must be

equally well supported by programming languages and tools just like changes

that can possibly be anticipated.

 Nevertheless current object oriented languages and methods fall

short of allowing unanticipated changes/reuse. Modeling of behavior

evolution is mostly inhibited by the inability to reuse and evolve existing

software in unanticipated ways.

 Generally the object-oriented world is classified broadly as class-

based languages (for example Java, C++) and prototype based languages (for

example Cecil (Litvinov 2003), Self (Ungar and Smith 1987)). Class-based

languages are able to statically enforce invariants, and hence rule out many

common errors during compile-time. This makes them to be widely accepted

for production programming.

17

 In spite of inherent limitations of class-based model there are ways

to express the dynamics of the real world with class-based programs. This is

done by following various language independent design patterns (Gamma

et al 1994), and language specific solutions given in various research work

(Meyer 1992, Meyers 1996) condensed by various authors to frequent

problem. In these approaches, the functionality missing from the language is

simulated by a set of cooperating classes. However this is not a satisfactory

solution (Yu 2001).

 This insight led to a variety of proposals for an extension of the

class-based model. Some of the works include specific extension for objects

that can be regarded from different perspectives at the same time (Wieringa

and de Jonge 1991, Wieringa et al 1994), or objects that can change roles

dynamically (Richardson and Schwarz 1991, Pernici 1989).

 It is desirable to have a minimal kernel model that offers maximal

expressiveness. The prototype based languages is the exemplary model that

offers maximal expressiveness with self-contained, concrete objects. The

prototype based languages can directly express changes of structure and

behavior of objects.

 To build a balanced design environment, the simplicity and

flexibility of prototype-based systems and the high abstraction and rigidity of

class-based systems are the key properties to have a good software

development environment.

 However in addition to these above mentioned software qualities, it

is important to consider the basic property of object-oriented programming

method, called the encapsulation and information hiding. Comparatively, the

class based systems has good encapsulation property when compared to

prototype-based systems which lacks the property of encapsulation (Scharli et

18

al 2004). The proposal of Object Oriented Encapsulation (OOE) (Scharli et al

2004) gives a new model for defining encapsulation policies in dynamically

typed languages.

 Hence in a balanced design environment combining prototype-

based systems and class-based systems, it is important to provide

encapsulation. We are motivated by the recent advancement in ownership

type encapsulation (Clarke et al 1998, Clarke and Drossopoulou 2002,

Boyapati et al 2003) which provides encapsulation at the level of object

reference. However, this ownership mechanism too has a serious limitation of

being static; hence every object owners will be decided at compile time itself

and cannot be changed at runtime. Thus ownership types can be adopted for

encapsulation only if there is a method for providing ownership transfer,

through which we can change the owners of an object dynamically.

 In the following sections, we have grouped the discussion of the

related work in the research world under four headings: the class-based and

prototype-based languages, the ownership model of encapsulation, the

ownership transfer and the dynamic object based design techniques.

2.2 CLASS VS PROTOTYPES

 There is a rich body of literature on type system for class-based

languages given in (Cardelli and Wegner 1985, Danforth and Tomlinson

1988, Ghelli and Orsini 1991, Palsberg and Schwartzbach 1992, Palsberg and

Schwartzbach 1994, Pierce and Turner 1994, Nierstrasz 1995, Bruce 1996,

Bruce 1995a, Bruce 1995b, Abadi and Cardelli 1996b).

 Class-based systems differ from object-based systems by allowing

groups of objects with uniform structure to be created via instantiation and the

19

structure and behavior of instantiated objects to be incrementally specified via

inheritance.

 In a class-based language, it is the classes that explicitly specify

how objects are to be created. An object can access its own instance

properties and the class properties of its class(Abadi and Cardelli 1996a).

 Inheritance is a relation between classes. Given a method

invocation of the form o.m(…), a language-dependent process called method

lookup is responsible for identifying the appropriate method m of the object o

that has to be executed. Class-based systems generally follow the standard

storage model for method lookup. In this model, methods are packed into

method suites and they are shared by objects of the same class. Method

lookup must access these method suites. In the presence of inheritance,

method suites are organized as a tree, and method lookup will follow the

chain of method suites. Within the methods, the identifier this (in languages

like Java and C++) refers to the host objects that originally received the

invocation of the method m(…).

 Subclass describes the structure of a set of objects in an incremental

manner, by offering extensions and changes to its direct superclass.

Inheritance is the sharing of attributes between a class and its superclass.

Without subclasses, an occurrence of this in a class declaration refers to an

object of that class. With subclass, this refers to an object of the subclass, not

to the superclass, and hence dynamically bound at run-time i.e. the code to be

executed is determined dynamically, depending on the object which received

the message. Thus from subclass to access definitions of superclass a special

identifier super is used. The this and super are pointer references that are

internally maintained by the language definition.

20

 Prototype-based languages offer maximum expressiveness

(Lieberman 1986, Ungar and Smith 1987, Taivalsaari 1996, Chambers 1993).

Prototype-based languages focus on working with self-contained concrete

objects instead of abstract classes. They give up the notion of class and hence

are more dynamic. In the Treaty of Orlando (Stein et al 1988), the differences

between prototype-based and class-based languages are analyzed. Class-based

language is known for its type soundness, while the prototype-based language

is well known for its object level specifications (Sciore 1989, Borning 1986).

 However, prototype-based systems have been criticised for their

lack of static type system. In prototype-based languages changing parent

object can be done dynamically at the level of objects (called delegation)

rather than static class based inheritance. Generally the prototype-based

languages concentrate at object level and not at the module level (Snyder

1986), where they severely lack in the encapsulation policy defined by the

class-based languages.

 Cecil (Chambers 1993), and Omega (Blaschek 1994) restricted

delegation to be static and hence delegation parents to be known statically.

They also eliminated any form of individual behavior change and hence there

is not much difference to a class-based environment.

 Types are invariants that put a constrain to the range of values that

can be stored in variables, passed as parameters or returned as method results

in any state of an object (Palsberg and Schwartzbach 1994).

 A type system defines a set of rules that allows us to infer types for

every expression within a program. The static type-checking guarantees the

type correctness property for an expression at compile-time and helps to

ensure that errors will not occur at run-time.

21

 The power of object-oriented type systems is their notion of

subtyping. An expression of a subtype may safely be used in any place where

an expression of a supertype is expected. Subtyping in conjunction with

dynamic binding lets the same message have different effects at different

stages of execution. Abadi and Cardelli proposed the first type systems for

prototype-based language in (Abadi and Cardelli 1996a).

 Some of the type systems for prototype based programming

environment include (Fisher and Mitchell 1994, Katiyar et al 1994, Fisher and

Mitchell 1995, Abadi and Cardelli 1996a, Riecke and Stone 2002). In (Fisher

and Mitchell 1994), Fisher and Mitchell assumed that method addition or

update and subtyping are mutually exclusive, i.e., their object types allow

either extension and update without subtyping or subtyping without extension

and update.

 Another more general approach is proposed by Riecke and Stone

(Riecke and Stone 2002). Their system combines unrestricted width subtyping

and unrestricted method addition; it is considered the first object calculus with

object extension and full width subtyping.

 Deciding object behavior based on classes fixes subtype

relationship. Thus objects cannot evolve by changing its hierarchy

dynamically. Enforcing static relationship does not describe the dynamic

sharing between objects (Stein et al 1988, Snyder 1986).

 The inheritance hierarchy helps in deciding subtyping relationship,

method or behavior inheritance from parents, and the lookup path which helps

in forwarding unknown messages to its parent.

 Delegation is an act of passing unknown messages to the delegatee

parent, which has a greater capability of handling that message on behalf of

22

the delegator child (Lieberman 1986, Stein et al 1988). Delegation is the

special property of the prototype-based languages which replaces the static

class-based inheritance.

 F. J. Hauck in (Hauck 1993a, Hauck 1993b) dealt with typed

inheritance based on typed interfaces. His aim is to change the base class of a

class that is fixed during inheritance. The pointer binding in defining the

inheritance/aggregation relation is made explicit and it is a kind of stored

pointer model. The properties of subtyping are discussed in detail by (Stein

1987), where object types and class types are differentiated.

 According to (Bardou and Dony 1996, Chambers et al 1991, Dony

et al 1992), an object and its delegation parents form one conceptual entity: a

split object.

 According to (Kniesel 1999, Kniesel 2000), every class is provided

with a mandatory delegatee field that refers to the parent (static parent) and

for dynamic delegation the parent field is changed with new delegatee object

provided the type of the new parent is subtype of the mandatory delegatee’s

type.

2.3 OWNERSHIP TYPES

 In object-oriented programming languages, aliasing is considered

as double-edged knife with its advantage of the creation of advanced data

structure, and disadvantage of object’s reference leakage (Minsky 1996),

which permits unauthorized access to the data structure nodes.

 John Hogg et al, recognized object aliasing as a major problem in

their work presented in (Hogg et al 1992). The Islands (Hogg 1991) and

Balloon (Almeida 1997) present research on full alias encapsulation, which is

23

considered as less flexible for working with advanced data structure. Safe

alias mechanism is given by Olivier Zendra and Dominique Colnet (Zendra

and Colnet 1999) based on Eiffel language.

 The proposal by Noble et. al. (Noble et al 1998) forms the basis for

ownership model. In the ownership model (Clarke et al 1998, Clarke and

Drossopoulou 2002, Boyapati C. 2003), the owner gives a logical boundary

thereby specifying how communication should take place between objects

inside the owners’ encapsulation boundary and objects outside the owners’

boundary.

 In object-oriented programs, an object can potentially reference any

other object in the object store and read and modify its fields through direct

field accesses or through method calls. Such programs with arbitrary object

structures are difficult to understand, to maintain, and to reason about.

 The ability of an object to access another object’s fields can be

achieved more easily by enforcing that only certain objects can modify the

object store directly whereas the rest of the objects have no direct reference to

the object store at all.

 Ownership has been applied successfully to structure the object

store and to restrict reference passing and the operations that can be

performed on references. In particular, ownership allows one to confine an

object inside a data structure and to prevent representation exposure through

leaking (Noble et al 1998).

 The restrictions on references simplify reasoning about programs:

they enable modular verification (Leino and Muller 2004, Muller and

Poetzsch-Heffter 1999), facilitate thread synchronization (Boyapati et al

24

2002), and allow programmers to exchange internal representations of data

structures (Banerjee and Naumann 2005).

 Ownership models usually enforce the owner-as-dominator

property (Clarke et al 2002). This restriction allows an owner object to control

how the objects it (transitively) owns are accessed.

 The verification of functional correctness properties such as object

invariants, a weaker ownership model suffices: an object X can be referenced

by any other object, but reference chains that do not pass through X’s owner

must not be used to modify X (Lieno and Muller 2004). This model

distinguishes among read, write and read-only references, and enforces the

owner-as-dominator property only on read-write references. Owners can

control modifications of owned objects. This property is called as owner-as-

modifier (Dietl and Muller 2005).

 Ownership properties can be checked statically by type systems.

Most existing work focuses on parametric ownership type systems that

enforce the owner-as-dominator property (Clarke and Drossopoulou 2002).

The ownership type systems by Boyapati (Boyapati and Rinard 2004,

Boyapati et al 2003) weaken the owner-as-dominator property by allowing

instances of inner classes to access the representation of the instance of the

outer class they are associated with. Thus, they can handle iterators, but not

more general forms of sharing. While parametric ownership type systems

describe ownership properties accurately and guarantee a strong type

invariant, ownership parametricity increases the complexity of the type

system and the annotation overhead (Dietel and Muller 2005).

 In Universes (Mueller and Poetzsch-Heffter 1999), authors relax

the restricted nature of the existing ownership types by permitting passing of

references (on condition) outside the boundary and also defining invariants on

25

objects. The Universe type system organizes objects into ownership contexts

(Dietl and Müller 2005, Mueller and Poetzsch-Heffter 1999). Each object has

0 or 1 owner objects. The owner of an object (or the absence of an owner) is

determined by the new expression that creates the object. Once determined,

the owner of an object cannot be changed.

 The Universe type system enforces the "owner-as-modifier"

property. Thus in this situation, if one looks at all the references from outside

an ownership context into objects within the context, all of these references

must be read-only references, with the exception of any references from the

context's owner.

 In proposals by (Potanin et al 2004, Potanin et al 2006), approaches

have been made towards making ownership more practical for the purpose of

programming languages with parametric polymorphic type system. Effect

based encapsulation mechanism is proposed by Yi Lu and John Potter (Lu and

Potter 2006).

 The other alternative encapsulation technique for ownership type is

by providing restriction to access certain objects based on their type

annotations (Zhao et al 2003, Vitek and Bokowski 1999, Aldrich et al 2002).

 Confinement properties impose a structure on object graphs which

can be used to enforce encapsulation properties essential to certain program

optimizations, modular reasoning, and software assurance.

 In (Vitek and Bokowski 1999) Bokowski and Vitek proposed a

lightweight notion of encapsulation for Java called confined types. The idea is

to use Java’s notion of software module (packages) as an encapsulation

boundary. A class is termed confined if references to instances of the class

may not leak out of the class defining package. In other words, a confined

26

object can only be stored in fields of objects defined in the same package and

manipulated by code of classes belonging to its package. This approach

requires very few annotations (one annotation per confined class, and some

extra annotation for inherited method) and that conformance to the

confinement rules can be checked in a module-wise manner. Confinement, as

defined in (Clarke 2001, Gordon 2007, Gordon and Noble 2007), enforces the

informal soundness property that an object of confined type is encapsulated in

its defining scope. Two drawbacks of the work of confinement types are: (1)

classes can only be confined within a single package and (2) standard

collection classes (such as vectors, lists) can not be used to hold confined

objects.

 Following this in (Zhao et al 2003) the authors tried to resolve the

issues by finding solution to the above mentioned two problems. The idea is

that modules are composed of two distinct software layers: an interface

composed of public classes and a core consisting of confined classes.

Confinement adds to the visibility rules provided by the language by

guaranteeing that subtyping can not be used to ‘leak’ reference to core

classes. Furthermore confinement annotations make the programmer’s intent

explicit and allow for automated checking.

2.4 OWNERSHIP TRANSFER

 Ownership transfer is the property of changing the ownership of an

object at run time. Generally, the existing ownership system fixes the owner

of an object statically and hence the owner cannot be changed dynamically

(Cameron et al 2007, Muller and Rudich 2007, Bornat et al 2005). The

support for ownership transfer based on uniqueness (Boyland and Retert

2005) increases the complexity of the program understanding.

27

 The other method of ownership transfer is the External Uniqueness

(Clarke and Wrigstsad 2003), used to remove the problems faced by unique

reference called the abstraction and the orthogonality problems. The idea is

that the externally unique reference is the only active reference into the

aggregate object from outside and hence it is unique.

 The problem with external uniqueness is that both, the movement

and the borrowing (temporary transfer, existing for the scope of the function)

cause the entire aggregate to transfer (for example, transferring an entire list)

and hence it is not per-object based ownership transfer (transferring particular

node within the list). The other approach is based on object invariants (Lieno

et al 2004, Lieno et al 2005) where the ownership transfer is appealed

between owners only after both the owners are unpacked. Work in (Bornat et

al 2005) deals with ownership transfer using separation logic, where the

permission is transferred between concurrent threads.

 The work in (Pradeep 2006) aims at consolidating three worlds

namely, class-based, prototype-based, and role-based language model using

ownership encapsulation and modal logic. In this work ownership transfer is

given as dynamic role modification (also known as mode-switching (Abadi

and Cardelli 1996a)). The work in (Tamai et al 2005) gives dynamic adaptive

environment which forms major inspiration for the present work.

 All the above ownership-based system do not support proper

ownership transfer or provide support based on uniqueness or provided only

with migration.

2.5 DYNAMIC OBJECT-BASED DESIGN

 Dynamic object re-classification is a feature which allows an object

to change its class while retaining its identity. Thus, the object’s behavior can

28

change in fundamental ways (e.g., non-empty lists becoming empty, iconified

windows being expanded, etc.) through re-classification, rather than replacing

objects of the old class by objects of the new class. Lack of re-classification

primitives has long been recognized as a practical limitation of object-

oriented programming.

 A distinguished feature of Fickle, with respect to other proposals

for dynamic object reclassification (Ancona et al 2001, Drossopoulou et al

2001), is that it is type-safe, in the sense that any type correct program is

guaranteed never to access non-existing fields or methods. In Fickle class

definitions may be preceded by the keyword state or root with the following

meaning: state classes are meant to describe the properties of an object while

it satisfies some conditions; when it does not satisfy these conditions any

more, it must be explicitly re-classified to another state class.

 The other form of dynamic object modification (i.e. dynamic

inheritance) is the delegation. Delegation is an act of passing unknown

messages to the delegatee parent, which is more capable of handling that

message on behalf of the delegator child (Lieberman 1986, Stein et al 1988),

where the automatic forwarding of messages to the parent will internally

binding this reference of the receiver object.

 According to (Fisher and Mitchell 1994, Abadi and Cardelli

1996a), delegation cannot be safely combined with static typing and

subtyping. The proposal from Riecke and Stone avoided this restriction in

their proposal (Riecke and Stone 2002); it is considered the first object

calculus with object extension and full width subtyping. According to

(Bardou and Dony 1996, Chambers et al 1991, Dony et al 1992), an object

and its delegation parents form one conceptual entity, a split object.

29

 According to (Kniesel 1998, Kniesel 1999, Kniesel 2000), every

class is provided a mandatory delegatee field that refers to the parent (static

parent). In case of dynamic delegation, if the type of the new parent is subtype

of the mandatory delegatee’s type, the parent field is changed with new

delegatee object.

 From this concept of unanticipated delegation in object-oriented

programming language, we are motivated to with our idea of unanticipated

ownership transfer by letting dynamic binding between ownership domains

and hence we have more dynamic object migration environment.

30

CHAPTER 3

OWNERSHIP TRANSFER IN CLASS-BASED OWNERSHIP

LANGUAGES

3.1 INTRODUCTION

 In this chapter, we present our model for ownership transfer, which

helps in adding the facility of ownership transfer in typical class-based

programming languages such as Java, C++, etc. First, we discuss our base

model which is the representation of the external owner through which object

migration is carried out. This is called the dominant ownership. Next we

formulate a schematic model to represent classes, objects, and owners, which

will help us analyze the reference relationship between classes and objects in

a class-based ownership language environment with their encapsulation and

relationship properties. In this model, we exploit the classification of

encapsulation as is used in class-based ownership environment. We shall also

discuss the problems associated with having ownership transfer (a.k.a. object

migration) in class-based systems.

 First we discuss the modified ownership type, called the dominant

ownership domain in the next section 3.2, followed by a discussion on our

proposed model in Section 3.3.

3.2 THE DOMINANT OWNERSHIP DOMAIN

 Aggregate objects as used in class based languages are containment

constructs that group other objects organized in some manner, e.g., sets, bags,

31

lists, tuples, arrays, etc. Aggregates typically support operations to access

individual members, and to iterate over all members, as in queries. Ownership

types forms an aggregate of objects with owner-as-dominator property.

Aggregates maybe "homogeneous", containing only objects from the same

class or from classes inheriting from the same class, or they may be

"heterogeneous", containing objects from many classes (Kent and Maung

1995)

 An aggregate object’s representation encapsulation is violated

when the mutable objects making that aggregate object’s representation are

accessed directly by other objects in the system. As an example, accessing

mutable node objects that are part of a linked list by objects other than the

linked list of which those nodes are a part would be a violation of the list’s

representation encapsulation.

 In our approach, we use the ownership type as proposed by the

authors in (Clarke et al 1998, Clarke and Drossopoulou 2002, Boyapati 2003)

albeit in a customized form where the owner is capable of holding dynamic

collections of aggregate objects and is also capable of establishing

unanticipated relationship with other such owners. These owners are called

the dominant-owners. Dominant ownership domain will encapsulate the entire

aggregate object. Figure 3.1 below shows the dominant ownership domain

and their encapsulated aggregate objects. Here Elvis_Center is called the

dominant owner. We propose a mechanism of establishing both anticipated

and unanticipated relationship between dominant owners called

neighbourhood. The neighbourhood is unidirectional, i.e., for example, ∆ κ Ω

implies that ∆ has Ω as a neighbor but Ω doesn’t have neighbor ∆. The Greek

letter Kappa (κ) is used to represent the neighborhood between owners. In

Figure 3.1, the dominant owner Ounda_Center is the neighbour of

Elvis_Center but the reverse is not true i.e. Elvis_Center is not the neighbour

32

of Ounda_Center. Hence the neighborhood relationship as represented in the

figure is Elvis_Center κ Ounda_Center.

Figure 3.1 Dominant ownership domain.

 Neighborhood helps to restrict ownership transfer only to a

neighbour dominant ownership domain. In our design, neighbourhood is not

fixed throughout the lifetime of the dominant owner, i.e., it can dynamically

bind with other dominant owners. It can also unbind from existing

neighbours, thereby modifying the neighbourhood scenario at runtime. Thus

the property of dynamic modifications to neighborhood helps in unanticipated

ownership transfer.

 As already mentioned, the objects within the dominant owners are

called the aggregate objects. Aggregate objects will have their own ownership

boundary. As an example, in Figure 3.1, the Project_Record is an aggregate

33

object encapsulating the other objects within it. The object

Sydney:Employment_Node (object Sydney of the type Employment_Node)

and the object NewYork:Employment_Node are encapsulated by

Project_Record, i.e., Project_Record is the owner of these two objects. These

objects in turn have their contexts encapsulated.

 By default, the objects at the same level, e.g,

Sydney:Employment_Node and NewYork:Employment_Node are assumed

internally as neighbours. However, internal neighbourhoods like this are fixed

statically and hence can not be modified at runtime dynamically. Thus the

objects Sydney:Employment_Node and NewYork:Employment_Node are

having fixed neighbourhood, and similarly the objects J1(LBS) and

J2(Managing_Keys) are at the same level and hence are neighbours internally.

 Ownership encapsulation is an important property that defines

restrictions at the reference level. In the next section the schematic

representation is discussed followed by a detailed discussion on encapsulation

properties as is applicable in our model.

3.2.1 Object Migration

 Object migration is the property which permits an object to

dynamically transfer its ownership from one ownership domain to another

neighborhood ownership domain. In Object migration the migrated object will

change its ownership domain. After migration, the migrated object will have

multiple owners, i.e., the current owner to which the object gets migrated and

the original owner from where the object is instantiated. The objects can

migrate only between neighborhood domains. Thus the objects are free to

migrate between dominant owners or between aggregate owners present at the

same level. However, object migration causes side effects when added in a

class-based scenario. In the next subsection we shall formulate a schematic

34

model to capture the key properties to be noted, which will help to analyze the

side-effects in object migration.

 In Figure 3.2, the owner dominant Elvis_Center has a neighbor

Ounda_Center. The objects inside the Elvis_Center are allowed to migrate

from Elvis_Center based on the neighbourhood of the object. The object

J1(LBS) is permitted to migrate from the aggregate owner

Sydney:Employment_Node to NewYork:Employment_Node which is at the

same level of Sydney:Employment_Node, and can also migrate from

Project_Record to other aggregate owner present at the same level of

Project_Record. Also the object J1(LBS) can migrate from dominant owner

Elvis_Center to its neighbor Ounda_Center, however it is not permitted to

migrate to Runa_Center which is neighbor of Ounda_Center.

Figure 3.2 Object Migration

 In the next section we shall analyze the standard storage model of a

class-based programming language in representing the relationship between

35

classes and objects in the heap. And in the later part of this subsection we

shall formulate a schematic representation of classes, objects and ownership

representation using our model called the reference model.

3.3 CLASSES, OBJECTS AND DOMINANT OWNERSHIP

ENVIRONMENT

 Adding object migration to a class-based object oriented languages

is not free of hazards. However, before studying the problems associated with

ownership transfer, it is important to study the core part of dominant

ownership, i.e., relationship. Let us first model the run time heap memory lay-

out for object to class relationship within the dominant ownership

environment, which can help us understand the encapsulation breaches that

may occur when we add object migration to a class-based object oriented

languages.

 The model we propose would capture the general representation of

classes and objects in a class-based programming language like C++ and

Java. Creating a simple model to represent the relationship between classes,

objects, owners and neighbors would help us to analyze the side-effects. The

proposed model gives the runtime layout and hence clearly shows the

reference relationship between objects and classes in an ownership

environment.

 The simplicity of the proposed model is due to the fact that in

general, to capture the side-effects happening at the reference level of a class-

based systems we need only few properties to get highlighted instead of every

internal details of a class or object. The details we are more concerned about

are the reference relation between classes and objects in a class-based

ownership system, the encapsulation boundary, and the presence of static

variables. Thus this model represents the reference relationship between

36

objects, classes at language implementation level in a class-based ownership

environment and helps us to analyze the side-effects directly at the language

implementation level.

 The next subsection explains the standard storage model of generic

class-based programming languages, followed by our reference model that

captures the representation of classes, objects, owners and neighbors in such

an environment in the next subsection. This subsection is followed by the

classification of encapsulation property in a class-based ownership

environment in subsection 3.3.3.

3.3.1 The Standard Storage Model

 In class-based languages, methods are not directly embedded into

objects; instead they are factored into method suites that are shared by the

objects of the same class. Method lookups access these method suites

associated with the corresponding classes. In the presence of inheritance,

method suites are organized as hierarchical tree, and method lookup may

require examining a chain of method suites. The storage model of object is

important to understand the semantics of programming language, the reason is

driven as follows from (Abadi and Cardelli 1996a):

 (…) it is usually designed to produce the illusion that methods

are, after all, embedded directly into object, as in naïve storage

model. When this illusion fails, confusion may result in both

language semantics and programming.

 Another important field to be noted is this and super identifier; this

identifier is used by the method to refer to the object that originally received

the invocation of that method, and the super identifier is used by the subclass

methods to invoke the old version of the method from a superclass. In the

37

presence of inheritance, most practical programming languages follow

hierarchical method suites. In hierarchical method suites, the method lookups

search these suites from subclasses to superclasses until an appropriate

method is found.

 Thus the hierarchical method suite helps us to organize the lookup

hierarchy into well defined structure. In our design we are particularly

interested in the reference relationship between two entities like classes to

objects, or subclass to superclass etc., and thereby analyzing the side-effects

in object migration in the presence of inheritance. In the next section, we will

discuss the reference model.

3.3.2 The Reference Model

 Figure 3.3 shows our reference model. We use sphere to represent

object, rectangle to represent classes and oval to represent owners, and in

addition we use two small circles, hollow circle and filled circle, to represent

the properties of the corresponding entities. The hollow circle indicates the

property of an individual entity, i.e., the presence of the variables like,

instance variable in the case of objects and static or class variables in the case

of classes. We represent the relationship between two entities using presence

of filled circle. As an example the type of an object can be represented by

showing a reference pointing from an object to its corresponding class, and

the subclass to superclass relationship can be represented by showing a

reference pointing from a subclass to its superclass. Similarly the dominant

ownership relations can be represented using a reference pointing from

classes/objects to the corresponding dominant owner. The reference present in

the class will say the current owner, and the presence of reference in the

object will represent the original owner from where the object is created. And

the relationship between dominant owners (neighborhood) can be represented

38

by the presence of a reference from one dominant owner pointing to another

dominant ownership domain.

Figure 3.3 Reference Model - capturing Classes, Objects, Owners and

Neighbors representation in class-based ownership type

systems

 In addition, there is another relation called aggregate owner

relationship, which represents the ownership of aggregate objects present

within the dominant owner. As an example in Figure 3.3(i) X and A represent

the dominant owners, and B (encapsulates C) and D (encapsulates its own

context) are the aggregate object. The aggregate objects B and D are

considered to present at the same level within the dominant owner A since

both aggregate has the same dominant owner A as their current owner. C is

the aggregate owner encapsulating its own context.

 Figure 3.3(a) shows two objects to a class (sibling objects) and the

presence of class variable indicate that it is shared by the objects belonging to

39

this class. The hollow circle in the class represents the presence of class

instance or static variables, and hollow circle in the object instance represents

object instance variables or non-static variables. Filled circle in the object

instances shows the type of object, i.e. the class to which the object belongs.

The Figure 3.3(b) shows empty classes with an empty object. These are

represented with the usual notation of sphere and rectangle without a name

associated with these entities. These are objects and classes that are

deleted/migrated without revoking the memory through garbage collection. It

is possible for a system to contain empty objects/classes/dominant owners.

This class does as shown in this example (Figure 3.3(b)) shows a class

without static variables present in it (indicated by the absence of hollow

circle). Figure 3.3(c) shows empty dominant owner. Figure 3.3(a) also shows

one deleted object. In Figure 3.3, “Some Name” indicates the name

(identifier) given to an entities (like classes/objects/dominant owner) which

are unique inside the environment.

 Figure 3.3(c) shows the dominant owner, while Figure 3.3(d) shows

the representation for neighbourhood of the dominant owner. The

Figure 3.3(e) shows the presence of objects and classes within the dominant

owners’ environment and also the presence of subclasses. The presence of

filled circle in the dominant owner indicates the presence of the

neighbourhood of the owner.

 Object migration is the property which permits an object to

dynamically transfer its ownership from one ownership domain to another

neighborhood ownership domain. The presence of hollow circle in the

dominant owner represents the presence of migrated object inside the

dominant owner. Figure 3.3(i) shows the migrated object D within the domain

A with the presence of hollow circle inside the dominant owner A. After

migration the class will have a reference to its current owner (in this case

40

domain A) and the object will point to the original owner from where it is

migrated (in this case X).

 In Figure 3.3(h) we show the presence of inheritance relationship in

the dominant owner. In Figure 3.3(i) the dominant owner A encapsulates the

object B and B in turn encapsulates object C. There exists a subclass of C, the

Csub. D is an object migrated to dominant owner A. Thus in Figure 3.3(i) we

are having a hollow circle in the dominant owner which says the presence of

migrated object within this dominant ownership domain A.

3.3.3 Classes, Object and Owner Encapsulation

 Our next step is to define the encapsulation boundary in a class-

based programming language model in the presence of ownership. We

classify the encapsulation under the following three heads:

1. Class Encapsulation

2. Object Encapsulation

3. Owner Encapsulation

 These three kinds of encapsulations would lead to the distinction of

the encapsulation boundary clearly and will also help in identifying the side-

effects that may affect the encapsulation boundary during delegation.

 In Figure 3.2, the encapsulation boundaries for the three kinds

are shown. Figure 3.2(f) shows the class encapsulation boundary, and

Figure 3.2(g) shows the object encapsulation. The difference between the

above two kinds of encapsulation is the presence of instance variables, i.e.,

the presence of class-variables impose class encapsulation and its absence

impose object encapsulation. In class encapsulation the class is shared among

the objects belonging to the corresponding classes. And in object

41

encapsulation, each object has its own separate class properties and hence has

separate encapsulation boundary. Figure 3.2(h) shows the dominant owner

encapsulation boundary. The dominant owner acts as a package or container

encapsulating both classes and the objects within its boundary. Figure 3.2(i)

shows the aggregate owners’ encapsulation boundary and the visibility rules

in the presence of ownership encapsulation, where the aggregate owner is the

class or object encapsulating the objects it contains within its encapsulation

boundary. In Figure 3.2(i), we have shown a class D as a migrated object to

the dominant owner A, which implies that the class D and its object will

follow all the rules that are applicable to the aggregate present within the

dominant owner A.

 Until now we have defined a reference model that captures the

reference relationship and encapsulation property of objects, classes in a

class-based ownership environment. In the rest of this chapter, we would

develop a scenario that will help us to understand the problem clearly. We use

our reference model to depict the situation and later we shall analyze the side-

effects and how object migration will happen in a class-based ownership

environment.

3.4 SCENARIO

 Let us assume that we are having a research organization called

Elvis_Center. The Elvis_Center forms an encapsulation boundary to the

inside objects as per the ownership property. Let us take the scenario given in

Figure 3.4. In this situation the employees can migrate from one company to

other company.

42

Figure 3.4 Scenario showing Object Migration

 In Figure 3.4, we have a class Employee within the owner

Elvis_Center. It maintains details about the employees. This implies the

objects created from the class Employee will have the Elvis_Center as their

default owner. The class Employee has two variables, the static class variable

and the object-instance variable. The object-instances Zonal-Manager and the

Senior-Manager have their own copy of the variable, integer, and share the

static variable, Records. As the design is based on the class-based language,

the objects will have a pointer to the class from which it is created.

 In addition to the encapsulation boundary the owner Elvis_Center

has declared its static relation to other owner Ounda_Center, as shown in the

Figure 3.4.

 Figure 3.5 is the reference model for the scenario given in the

Figure 3.4. In Figure 3.5 we have only captured the necessary property to be

43

highlighted, like ownership encapsulation, dominant owners, neighborhood,

presence of static variables and the object migration. Hence, this model will

help us to analyze the side-effects due to object migration in a class-based

ownership environment clearly.

Figure 3.5 Reference Model of the Scenario

 In Figure 3.5, the hollow circle is absent in Ounda_Center

representing the absent of migrated object inside the Ounda_Center.

3.5 CONCLUSION

 In this chapter we have analyzed the fundamental concepts

associated with the ownership transfer in a class-based ownership

environment. We have also developed a reference model that captures certain

minimal properties like classes, objects, owners and neighborhood

44

representation in a class-based ownership environment with its encapsulation

properties. The reference model will be helpful in understanding possible

side-effects that may occur in object migration in such an environment.

 In the next chapter, we shall discuss the problem associated with

object migration and we shall represent them using our reference model.

45

CHAPTER 4

THE OWNERSHIP TRANSFER PROBLEMS AND

SOLUTION

4.1 INTRODUCTION

 Class-based language has features like the presence of permanent

pointer from object pointing to the class it belongs to. In such programming

environment, the type of an object is determined by the class to which the

object belongs. At runtime this relationship is represented using a pointer

between the object instance and the class to which the object belongs.

Similarly the is-a relationship between subclass and superclass is also

represented using a pointer from subclass to the superclass.

 However, having these pointers create side-effects to dynamic

object migration. Various problems may arise out of the situation. Here we

consider two main problems, viz., (1) existence of multiple classes, and

(2) the dangling pointer problem. These effects are discussed in the next two

sections of this chapter. Section 4.4 discusses the proposed model called the

Ownership Transfer Model (OTM), where we also present a solution for the

problems of multiple class and dangling pointer. We have analyzes the

solution is given in 4.5.

4.2 MULTIPLE-CLASS AND ENCAPSULATION BREACH

 The property of ownership type is that it does not permit reference

leakage outside the boundary, which may break encapsulation. However

46

when an object is transferred between owners, the ownership transfer

necessitates pointer exposure.

 Let us reconsider the scenario given in the earlier chapter. In this

scenario, an instance of the class Employee can migrate from one company to

other company. Figure 4.1 block A reproduces the scenario given in the

earlier chapter. Here blocks B and C give the situation after an ownership

transfer.

Figure 4.1 Scenario showing breaching effect due to Multi class existence

 As per the class-based system multiple objects of same type will be

created from a single class, which creates the requirement of maintaining a

common class instance for its entire set of object instances in the whole

system. In our example, the object Zonal_Manager and the Senior-Researcher

are from the class Employee. Thus after the migration of Senior_Researcher

from owner Elvis_Center to the neighbour owner Ounda_Center there exists

two copies of the class-instance Employee one in the owner Elvis_Center and

the other in the new owner Ounda_Center. However, class Employee contains

47

static variable called Records. Thus with multiple copies present in different

owner, multiple copies of the static variable will also be present. Hence,

altering the static class-instance variable present in one of the owners

(Ounda_Center or Elvis_Center) will need the other copy of the class-instance

present in the other owner (Elvis_Center or Ounda_Center respectively) to be

modified indirectly. Thus the multiple-class is a serious side-effect of the

ownership transfer where we cannot guarantee the safety properties.

4.3 EXISTENCE OF DANGLING POINTER

 The existing ownership model allows the alias existence within the

ownership boundary. This flexibility is to relax the model to adapt various

data-structures. However, this flexibility acts as a constraint for adapting

ownership model into the dynamic environment.

 As per our scenario in Section 4.2, Figure 4.1A in this chapter, the

owner Elvis_Center has two managers Zonal_Managers and the

Senior_Researcher that are having the same class type Employee. Let us add a

superclass to the class Employee called Projet_Documents to this scenario;

this superclass is used to maintain the number of employees within the

company. Class Projet_Documents is maintained by its object instances

Coordinator X and Coordinator Y. Coordinator Y is an alias of Coordinator

X. This is shown in Figure 4.2 block A. Coordinator X is now migrated to

related owner Ounda_Center as shown in Figure 4.2B. However, since

Coordinator Y is unaware of this migration, it continues pointing to

Coordinator X, now an empty object. Thus migration leaves an empty object

in owner Elvis_Center to which Coordinator Y continues to point. Thus the

problem of dangling pointer is created in this situation.

48

 The existence of alias within an owner to a deleted object location

will remains as a residue alias. These kinds of residue aliases are not desirable

since these will create adverse side effects on the software design.

Figure 4.2 Scenario showing breaching effect due to dangling pointer

existence

4.4 THE OWNERSHIP TRANSFER MODEL (OTM)

 Although a desirable property in a class based scenario is to have

object migration, from the discussions of the earlier sections, it is clear that

simple modifications of the static properties like encapsulation (ownership

encapsulation) in an aliasing environment to achieve object migration will

create serious side-effects. To this end, we propose to modify the present type

system annotations by adding type annotations that capture alias information

which is used to control sharing and dynamic movement of an object.

49

 This section describes our proposed model Ownership Transfer

Model. It discusses how it is possible to move objects across the

encapsulation boundary in a class-based language model. We have also

proposed the design of a language called Jmigrate (Jm) that illustrates the

model OTM. This will be discussed in the next chapter.

 In OTM we classify aliases in three categories, viz.

1. unknown aliases

2. permitted references

3. known aliases

 as shown in Figure 4.3.

 Unknown aliases are references that do not allow the host object to

know about its presence and hence may be harmful. The permitted references

are references or aliases that are part of the software design criteria. The

known aliases are the references which are present due to the language design

model. Both the permitted references and the known alias are considered to be

harmless. As an example, in a class-based programming language the

reference between objects to classes are known aliases.

 In Figure 4.3, the dotted line represents known aliases, the dashed

line represents the unknown aliases and the solid line represents the known

permitted references. Class A is the class instance, A1 and A2 represent the

object instances and x represents the (nonstatic) variable present within each

of the object instances. By the language design, the object instance will have a

reference pointing to the class to which it belong and similarly the object will

have a this reference to refer the variables present within itself (in this case

only x). These are the known alias references since they are part of the

language design itself.

50

Elvis_Center

A

A1

A2

B

iterator

Permitted aliases

unknown aliases

known aliases

this

this

A foo() {

 return x; // return location of x

}

B = A2.foo();

Figure 4.3 The Presence of Aliasing in a Class-Based Programming

 Environment

 Object B belonging to some class type other than A, is acquiring

the reference of x belonging to A1 by calling the method foo() which will

return the reference of x. Such references are unknown aliases and they may

51

be harmful, since they can alter the content of variable x without passing

through the interface provided by the object A1.

 The iterator object belongs to class A and acquires a reference to

the object A2 explicitly. This is a known alias. Such structure facilitates

various data structural properties.

 First, the skeleton of OTM and its relation to traditional object

models is described in section 4.4.1. Section 4.4.2 discusses how problems

like dangling pointers and multi-class are taken care of in the proposed model.

4.4.1 The Ownership Transfer Model: Structure

 The Ownership Transfer Model has the following features:

1. It has an owner, similar to package (as in Java) or container (as

in C++ / Java) that is capable of holding other objects.

2. Each owner is mapped to a memory segment that does not

interfere with other owners

3. Ownership transfer is achieved using two methods: anticipated

and unanticipated design.

4. The objects are created using new operation as per the class-

based language.

5. Neighborhood defines the relationship between owners

6. The neighborhood can be established as either anticipated or

unanticipated in OTM

7. Objects can migrate only to the neighborhood owners

 These seven features establish the skeleton of the Ownership

Transfer Model (OTM). To have a more general presentation of the

52

ownership transfer idea, it is useful to introduce in the system the bind

establisher (discussed below), in addition to the owner environment.

 Bind Establisher: The bind establisher is a collection of methods

that is used to establish unanticipated relationship with other owners.

Anticipated ownership relations can be decided at the compile time by

programmers. The bind establisher is used to extend the neighborhood of an

owner dynamically using the methods provided within it. Thus we can

achieve unanticipated owners relationship where the objects can evolve in an

unanticipated manner by acquiring properties dynamically from the

neighborhood owners. From programmer’s perspective, the bind establisher

and the owner environment are the same.

 In OTM, ownership transfer is possible only to the related owners.

Let us now assume that an owner A has an anticipated relationship with other

owner B. In this case, an ownership transfer can happen from A to B.

Dynamically the owner A can bind to any other owner C in an unanticipated

manner to have unanticipated ownership transfer.

4.4.2 OTM Approach to Dangling Pointer and Multiple-Class

Problems

 As the dangling pointer can create adverse side-effects, our primary

challenge is to remove the possibility of the existence of dangling pointer.

The dangling pointer can be removed only if we have restriction in transfer of

the objects. This can be achieved by having object annotations specifying the

aliasing property of the objects. Our approach in OTM differentiates between

the class-type and the object-type. The class type of the corresponding objects

is the class name from which they have been formed by using new operation.

On the other hand, the object type specifies the object’s alias property. In

OTM we classify the object property as confined and non-confined. The

53

confined objects are objects which can be aliased only by confined objects

from within the owner’s boundary. No non-confined objects are permitted to

alias with a confined object. On the other hand, a non-confined object can be

aliased by both confined and non-confined objects. This is shown in

Figure 4.4 and Figure 4.5.

 In Figure 4.4, we have shown two neighborhood dominant owners

Elvis_Center and Ounda_Center, where the <R> modifier represents the

confined objects and the <Y> modifier represents the non-confined objects..

The class Employee has four objects namely, Scientist A, Scientist B,

Scientist C and Scientist D. Among these object instances Scientist A and

Scientist D are of type <R> and the objects Scientist B and Scientist C are of

type <Y>. Solid line refers to aliases between two entities, the dashed line

refers to unknown aliases (which are not permitted), the dash-dot line refers to

read-only reference and the dotted line refers to known aliases. In Figure 4.4,

Scientist A is an alias to Scientist B and Scientist B is an alias to Scientist C.

It is also shown that Scientist B cannot refer to Scientist A since their object

types are different, i.e. Scientis B is of object type <Y> and Scientist A has

object type <R>.

 The object Senior_Researcher is the migrated object, from

Elvis_Center to Ounda_Center. This is shown with a dashed arrow with

diamond head, which is pointing to the original owner of the migrated object

Senior_Researcher, the Elvis_Center. Since the migrated object’s class

Employee has a static variable, any modification in one copy of the static

variable must be reflected to other copies of the class too. This is shown with

dotted arrow between the class Employee in owners Elvis_Center and

Ounda_Center. Within the migrated current owner Ounda_Center, the object

Senior_Researcher can have only read-only references to other <Y> typed

objects present within the Ounda_Center.

54

Figure 4.4 The Reference Diagram Representing the Aliasing Properties

 With this design we permit only the known alias reference across

the dominant owners’ boundary. Thus our system is statically checkable.

 In OTM, only the safe aliases are permitted, thereby providing a

mechanism for static verification of any possible side-effects due to object

migration. Hence, the permitted aliases and known aliases can be classified as

safe aliases for whom we can predict any possible side-effects at compilation

time. In OTM, we permit only the non-confined objects to migrate between

owners. This is because the non-confined objects cannot expose the owners’

contents. The permission to have alias reference between different object

types is given in Figure 4.5.

55

From

To

R

R

Y

Y

Not Permitted Permitted-Alias

Permitted-AliasNot Permitted

From

To

R

R

Y

Y

Permitted Permitted

PermittedNot Permitted

From

To

R

R

Y

Y

Can Not Migrate Can Not Migrate

Permitted-AliasNot Permitted

From

To

R

R

Y

Y

Can Not Migrate Can Not Migrate

Read-OnlyNot Permitted

Within Ownership Domain Between Ownership Domain

Form Migrated Objects to

Originator Ownership
Domain

Form Migrated Objects to

Migrated Ownership
Domain

From

To

R

R

Y

Y

Can Not Migrate

Can Not Migrate Permitted-Alias

From

To

R

R

Y

Y

Can Not Migrate Read-Only

Read-OnlyCan Not Migrate

Form Originator Ownership

Domain to Migrated Objects

Form Migrated Ownership

Domain to Migrated Objects

Permitted-Alias

Figure 4.5 Aliasing Properties for Objects

 In the Figure 4.5, we design a matrix diagram for specifying the

permitted alias properties between object types. The column From specify the

56

object type that can be alias to object types specified in the To column. As

shown in the diagram, within ownership domain we are permitting alias

reference between two <R> typed objects, and we are not permitting alias

from <Y> typed object to <R> typed object. We can build similarly for all the

other possible cases as shown in Figure 4.5.

 During object migration, the migrated object is permitted to refer

the originator owner’s contents through known aliases. Hence after object

migration, the migrated object has multiple owners, i.e., the previous owner

(originator) and the current owner. The confined objects within the previous

owner of the migrated object can have safe aliases to migrated objects and

also a migrated object can have safe aliases to its previous owners’ objects.

However, inside the current owner (to which the object has migrated), a

migrated object can have permitted read-only references, which means that

only the values can be obtained. It is not allowed to establish a reference

within the owner to which the object has migrated.

4.5 ANALYZING THE SOLUTION

 The aim of this research is to provide ownership transfer

mechanism by conforming to the ownership type system. Our challenge is to

find a system that takes care of the following problems:

1. The multiple-class effect and

2. Avoiding dangling pointer statically

 To the success of the model, these two challenges should be

satisfied without affecting the ownership encapsulation model in class-based

ownership programming language. In the above section we have formulated a

solution to these two problems by designing a type system. In this section we

57

shall validate the solution by analyzing the type mechanism designed in the

previous section with the scenario modeled in the previous chapter.

4.5.1 Multiple-Class Existence

 The problem due to the presence of the multiple-class across

various owners may create ownership breaches. The problem is approached in

two ways in the OTM:

1. It allows multiple existence of the class-instance, if and only if

there are no static variables present in the class-instance.

2. It provides the facility of message passing between owners

whenever the class-instance variables get altered.

 These typing characteristics can be implemented in any language

that is based on OTM. In Chapter 5 of the thesis, we exhibit a new language

Jmigrate (Jm) based on OTM.

Figure 4.6 Multi class existence

58

Example

 The following example illustrates the scenario where an object is

migrated between two neighborhood owners and we analyze the references in

various cases as given in Figure 4.6.

1. After migrating the object Senior_Researcher from owner

Elvis_Center to the neighbor Ounda_Center, we have multiple

existence of the class Employee.

2. Any change to the static variable in the Employee class, either

in Ounda_Center or in Elvis_Center will affect all other objects

depending on these shared class static variables.

3. Also if we have a subclass Extended_Employee to the class

Employee, as shown in Figure 4.6, any changes to class

Employee will also get affect the subclass Extended_Employee

4.5.2 Dangling Pointer Problem

 As the dangling pointer can create adverse side-effects, our primary

challenge is to remove the possibility of the existence of dangling pointer.

The dangling pointer can be removed only if we have restriction in transfer of

the objects. This can be achieved by having object annotations specifying the

aliasing property of the objects.

 In OTM, we move the alias pointer to the location of the migrated

object, i.e. we will update the alias pointer address information whenever the

aliased object is migrated.

59

Figure 4.7 Dangling pointer existence

Example

 The following example illustrates the scenario where an object is

migrated between two neighborhood owners in the presence of alias inside the

originator owner. The following points can be observed from the Figure 4.7.

1. The Coordinator X object is aliased by Coordinator Y object

within the owner Elvis_Center

2. After Coordinator X object gets migrated to Ounda_Center, the

alias from Coordinator Y will be converted into known alias,

and hence permitted to refer to the migrated object Coordinator

Y present within the owner Ounda_Center.

3. Thus we can avoid dangling pointer, as well as we can restrict

confined object to migrate outside the owners boundary.

60

4.6 CONCLUSION

 This chapter has presented the basic aspects of the OTM model. It

has been shown how the problems like dangling pointer and the multi-class

existence can be avoided statically in such a class-based environment.

 The main focus of the chapter has been the discussion of safety

problems that can arise from such an extension:

• The risk of “transferring ownership” of an object in a class-

based programming model which rise to problem with multi-

class existence

• The risk of “transferring ownership” of an object in the presence

of any unknown aliases

 A solution for the problem of multi-classes has been presented,

which consists of the rule that “allow multi-class existence / message

passing”. This seems to be obvious from the existing mechanism followed in

practice.

 Regarding the second problem it has been shown that upon

transferring the non-confined objects the reference that are present within the

originator owners boundary will follow the migrated object towards the

migrated domain. And identifying confined and non-confined objects are

done statically. So, every transfer that is statically safe is dynamically safe.

 The unanticipated extension that can be achieved via dynamic

binding between owners enables transfer of objects to the dynamic bound

owners. This is a powerful technique but it entails the risk that components

which have not been designed to work together might interact in undesirable

ways. The next chapter details a new language called Jmigrate (Jm) which is

based on OTM.

61

CHAPTER 5

THE JMIGRATE (Jm) LANGUAGE

5.1 INTRODUCTION

 The previous Chapter has introduced the OTM model facilitating

dynamic object migration. We also discussed the problems like (1) existence

of multiple classes, and (2) the dangling pointer problem.

 In this chapter we describe the design, implementation and

applications of the language Jmigrate (Jm). Jmigrate has Java like syntaxes

facilitating dynamic object migration following the model of OTM. Before a

detail discussion on the language Jmigrate we shall discuss the keywords used

in our language and its properties.

5.2 TYPE MODIFIERS

<R> <Y> class owner

static int extends neighbor

new this super

 In Jmigrate we classify the keywords into three broad categories,

viz., object modifiers, class modifiers and owner modifiers. Jmigrate contains

eleven keywords.

 Object modifiers consist of keywords like <R>, <Y>, new, this, int,

static. On the other hand, class modifiers consist of keywords like extends,

class. The owner modifier consists of keywords like owner and neighbor.

62

Apart from these modifiers every entity in the system will be identified using

an unique identifier name.

 The <R> and <Y> annotations are type modifiers (Section 4.4.2)

that specify objects alias property.

 The keyword owner is used to represent the dominant ownership

domain. The keyword neighbor is used to represent the anticipated

relationship between dominant owners. The keyword extends is used to

represent the subclass relationship between two classes.

 The keyword static, new, int, this are similar to Java and C++. The

static keyword is used to specify the static property of the class-instance. The

keyword new is used to instantiate objects from a class. The keyword int is

used to specify the integer variable. More importantly, the keyword this is

used to represent the current object or the method receiver and is used to

access the objects fields from inside. The keyword super is used to access the

fields in the hierarchy that is to access fields present in the superclass from the

subclass.

5.3 OBJECTS WITHIN OWNERS BOUNDARY

 In Jmigrate every object will have 0 or 1 aggregate owners, and 1

dominant owner. In Jmigrate, the dominant owners are declared using the

keyword ‘owner’. The aggregate owners are assumed by the presence of has-a

relationship between objects.

 …

 owner Elvis_Center {};

 …

63

 In the above, we have created a dominant owner Elvis_Center. The

dominant owner cannot have objects, i.e. we can not create objects for

Elvis_Center using new constructor.

 In Jmigrate, the keyword extends is used to specify two key

properties i.e.

1. The subclass and the subtype properties.

2. Specifying the aggregate objects within the dominant owners

 The class extending the dominant owner will make its objects to be

within the dominant owner by default. Following example program shows

how the inside objects are created.

[1]. owner Elvis_Center {};

[2]. class Employee extends Elvis_Center {

[3]. Properties property = new Properties();

[4]. static int Records;

 int Management_Skills;

[5]. Employee Skill_legal (int skill) {

if (this.Management_Skills == skill)

[6]. return this;

 }

int RecordNo(int number) {

[7]. this.Records = number;

 }

[8]. };

 …

[9]. Employee J1 = new Employee();

…

64

 The class Employee that extends the owner Elvis_Center comes

under the boundary of the owner, shown in Line[1]. Hence all the objects

created for the class Employee will have their default dominant owner as

Elvis_Center. Line[9] shows the Employee object J1, and hence the object

property (Line[3]) within the aggregate object J1 will have J1 as its aggregate

owner and Elvis_Center as its aggregate J1’s dominant owner. The static

keyword before the variable Records (Line[4]) specifies the shared entity and

hence in Line[7] modifying the static variable will affect all the objects

belonging to this class. Line[6] shows the function returning the this reference

of the object which will create alias to that object. In Section 5.6 we shall see

how we use our type system to restrict this kind of aliases.

5.4 ANTICIPATED OWNERS

 In anticipated declaration, the related owners are declared statically

by the owner using the keyword neighbor.

 owner Elvis_Center neighbor Ounda_Center { };

 owner Ounda_Center neighbor Runa_Center { };

 The neighbor keyword is used to declare the related owners. The

related owners are those to which the ownership transfer can happen. In the

above code the owner Elvis_Center is related to Ounda_Center and

Runa_Center . Ounda_Center, in turn, is related to the Runa_Center. The

relation gives a directional graph, which means that objects from

Elvis_Center can migrate/transfer to Ounda_Center or Runa_Center however

the other direction is not possible, i.e., objects from

Ounda_Center/Runa_Center cannot migrate/transfer to Elvis_Center. Thus

neighbor forms a directional relationship graph between dominant owners.

65

5.5 UN-ANTICIPATED OWNERS

 In unanticipated model the owner is free to bind dynamically to any

other owner using the method bind() present in every owner. The following is

an example of unanticipated ownership transfer:

 class Related_Accounts extends Elvis_Center {

 static int No-of-Workers;

 record-Update() {

 }

};

…

Ounda_Center :: Assessor = new Related_Accounts() ;

…

 To transfer objects between the owners the migrate() function has

to be called. The function is present within every owner and it takes two

arguments, migrate(object, target-owner). In the above example, Assessor is

the object created from the class Related_Accounts within the owner

Ounda_Center, (i.e. Creating a new object Assessor for the class

Related_Accounts within the dominant owner Ounda_Center)

 …

 Elvis_Center .migrate(Assessor, Runa_Center);

 // Error. The Elvis_Center has no relation to

Runa_Center

 …

 In the example, the dominant owner Elvis_Center has no

anticipated relationship with Runa_Center . Thus trying to transfer the object

Assessor to Runa_Center will result in error.

66

 Thus to transfer the Assessor to Runa_Center , we need to establish

dynamic relationship between the two dominant owners Elvis_Center and

Runa_Center. This relationship can be established using the bind() function,

that is present within every dominant owners.

…

Elvis_Center .bind(Runa_Center); // Establishes directional

//relationship

…

 Thus in the above line, unanticipated neighborhood relationship has

been established between the dominant owner Elvis_Center and the dominant

owner Runa_Center .

 Thus after establishing the unanticipated neighborhood relationship

between the dominant owners it becomes now possible to transfer the object

Assessor from Elvis_Center to Runa_Center as shown below.

…

Ounda_Center .migrate(Assessor, Elvis_Center);

// OK. The Elvis_Center is neighbor to Runa_Center

…

5.6 JMIGRATE TYPES

 To indicate the object as confined in Jmigrate objects are annotated

with the keyword <R> and non-confined objects with the keyword <Y>. The

annotations are explained using the following example:

<R> class Some_Records extends Elvis_Center {

static int Records;

int Personal_ID;

67

 userInfo() {

 /* gives details about the Employees */

 }

};

<Y> class Some_Related_Accounts extends Ounda_Center {

static int No-of-Managers;

static int No-of-Workers;

int Management_Skills;

 record-Update() {

 /* update the Accounts */

 }

};

 Since the design is based on a class-based language, the annotation

is given based on the class. In the above example the class Some_Records is

represented as confined by annotating it with <R> type, and the class

Some_Related_Accounts is represented as nonconfined by annotating it with

<Y> type.

 As per the property of the OTM the object type is restricted based

on the class annotations. Thus during object creation the object can have its

own type, either <R> or <Y> depending on the class annotations. This is

because; during object creation we must have a facility to specify the alias

property, like confined or non-confined, so that we cannot fix the alias type

statically by class annotations. As an example,

Elvis_Center :: <R> Coordinator = new Some_Records();

Elvis_Center :: <Y> Another_Coordinator = new Some_Records();

68

 In the above example, we are creating a new confined object

Coordinator for the confined class Some_Records within the dominant owner

Elvis_Center. Similarly we also try to create a new non-confined object called

Another_Coordinator for the confined class Some_Records. But creating non-

confined objects from a confined class is not permitted in Jmigrate. Thus the

class annotated with the keyword <R> can produce only <R> typed objects.

And on the other hand, creating new objects from non-confined classes are as

follows:

…

Ounda_Center :: <Y> Handle = new Some_Related_Accounts() ;

Ounda_Center :: <R> Another_Handle = new

Some_Related_Accounts() ;

…

 In the above example, we are creating a new non-confined object

Handle for the non-confined class Some_Related_Accounts within the

dominant owner Ounda_Center. Similarly we also try to create a new

confined object called Another_Handle for the same non-confined class

Some_Related_Accounts. This is possible and allowed in Jmigrate, since

during object creation there won’t be any possible alias existence to the

object.

 Thus the class annotated with the keyword <Y> can produce both

<R> typed objects and <Y> typed objects.

5.7 INHERITANCE AND SUBSUMPTION PROBLEM

 Inheritance and subsumption are the two key properties of object-

oriented programming systems. Subsumption is the ability to use a subclass

object where an object of its superclass is expected. Substituting a subclass

69

object in place where superclass object is expected makes the object oriented

systems more advantage and flexible for future design.

 However, in Jmigrate we cannot permit subsumption as present in

the literature of programming language. The problem here is with between the

confinement and migration of an object. As an example consider a class

Some_Records as follows:

 Elvis_Center neighbor Ounda_Center {};

<Y> class Some_Records extends Elvis_Center {

static int Records;

int Personal_ID;

 userInfo() {

 /* gives details about the Employees */

 }

};

Elvis_Center :: <R> A = new Some_Records();

Elvis_Center :: <Y> B = new Some_Records();

<Y> class Some_Inherited_Records extends Some_Records {

…

};

Elvis_Center :: <R> C = new Some_Inherited_Records();

Elvis_Center :: <Y> D = new Some_Inherited_Records();

 Thus in the above example the Some_Inherited_Records class

inherits the class Some_Records. We have also created objects for the classes

as above, where the object A and C are defined as confined objects and B and

D are declared as non-confined objects. Thus if we are going to follow

70

subsumption property between these classes and then permitting subclass

objects to substitute in place where we need superclass objects then we will

get problems. i.e. subsuming C in place of B or D in place of A will create

problems, where after subsuming C in place of B will allow C to migrate

which is undesired property. Also subsuming D in place of A will also

remove migration of the object D.

 Usage of subsumption relationship may create problems in

confinement and problems after ownership transfer. As an example, let us see

how subsumption relation will weaken the confinement:

(a) (b)

C

<Y>O1

C

<R>O2

O11 O22

D

<R>

D

<Y>

Figure 5.1 Subsumption Problems

 In the Figure 5.1(a) that the object O1 is of type <Y> and if we are

using subsumption relation then the O1 object will have the type D and can be

substituted in place of O11 : D, but the expected object type for D is <R>.

Similarly, in Figure 5.1(b) subsumption of the object O2 typed <R> as type D,

where the expected object type of D is <Y>. In the case of Figure 5.1(b) the

problem is not with confinement breaching as done in (a) but this

subsumption relation will create problem in expected result, due to migration

property of <Y> objects.

 Generally, the subtype relationship is decided from the subclass

relationship based on hierarchical structure. However, in Jmigrate we also

71

consider the object types, hence we can restrict subsumption relation between

objects present in the subclass to subsume to superclass objects if and only if

their object types are same. i.e. <R> object of a subclass can subsume only

another <R> objects of its superclass and similarly <Y> object of a subclass

can subsume only another <Y> objects of its superclass. T

5.8 MULTIPLE-CLASS PROBLEM

 The problem of multiple-class can be approached in two ways as

per the OTM,

1. Allowing multiple existence of the class-instance, if and only if

there is no static variables present in the class-instance.

 As per the above point, multiple existence of the class-instance

across the ownership boundary is possible as they won’t affect other objects.

This can be understood in the following example:

 <Y> class Records extends Elvis_Center{

// without static variables ;

 }

Elvis_Center :: <R> Coordinator = new Records;

Elvis_Center :: <Y> Non_Confined_Coordinator = new Records;

…

Elvis_Center.diffuse(Non_Confined_Coordinator, Ounda_Center);

 In the above example the class Records has no static variables. Two

objects called Coordinator and Non_Confined_Coordinator are created. In the

final line of the example the Non_Confined_Coordinator is migrated to the

related owner Ounda_Center. Hence after ownership transfer we will have

multiple existences of the class-instance Records in the owners Elvis_Center

72

and Ounda_Center. However, since there are no static variable, there is no

multiple class existence problems.

 The other point as per the OTM specifications is as follows:

2. Providing the facility of message passing between owners

whenever the class-instance variables get altered.

 As per the above point, multiple existence of the class-instance

across the ownership boundary is allowed, provided there exists a facility of

message passing. This can be explained in the following example:

<Y> class Records extends Elvis_Center {

static boolean Employee_Permission_Status;

int Personal_ID;

 userInfo() {

 /* gives details about the Employees */

 }

};

Elvis_Center :: <R> Coordinator = new Records;

Elvis_Center :: <Y> Non_Confined_Coordinator = new Records;

Elvis_Center.diffuse(Non_Confined_Coordinator, Ounda_Center);

 In the above example the class Records has static variable boolean

Employee_Permission_Status. There are two objects called Coordinator and

Non_Confined_Coordinator for this class. In the final line of the example we

are transfering the Non_Confined_Coordinator to the related owner. Hence

after ownership transfer we will have multiple existences of the class-instance

Records in the owners Elvis_Center and Ounda_Center. Thus updating the

static variable from Non_Confined_Coordinator present within the

73

Ounda_Center will indirectly affect the Confined object present within the

Elvis_Center.

 This modification is obvious from the scenario and is also common

in the present software environment. However, in Jmigrate modifying the

static variables through aliases is the problem we have to avoid. Thus with

this motto we make that the Non_Confined_Coordinator within

Ounda_Center can be accessed by other objects within the same owner

Ounda_Center using read-only references alone. Hence this will not break the

encapsulation and information hiding of the Non_Confined_Coordinator

object.

5.9 DANGLING POINTER PROBLEM

 The problem of dangling-pointer can be approached as follows,

1. Updating the migrating objects location to all its aliases.

 Updating the migrating objects location to all its aliases it self a

huge task, since the present programming languages object representation

does not permit such updating and also updating will be costlier that leaving

alias as such and go for garbage collections. In Jmigrate we follow indexed

object representation which will permit us to handle the problem easier. As an

example:

 <Y> class Records extends Elvis_Center{

 int value = 10;

 }

Elvis_Center :: <R> Coordinator = new Records;

Elvis_Center :: <Y> Non_Confined_Coordinator = new Records;

…

74

// Alias Creation

Coordinator = & Non_Confined_Coordinator;

// Non_Confined_Coordinator’s owner is Elvis_Center

Coordinator.value = 15; // change value to 15 within

//Non_Confined_Coordinator

…

// Non_Confined_Coordinator’s owner is Ounda_Center

Elvis_Center.diffuse(Non_Confined_Coordinator, Ounda_Center);

Coordinator.value = 20; // change value to 20 within

//Non_Confined_Coordinator

 In the above example the class Records has two objects called

Coordinator and Non_Confined_Coordinator. The Coordinator is alias to

Non_Confined_Coordinator. In the final line of the example the

Non_Confined_Coordinator is migrated to the related owner Ounda_Center.

Hence after ownership transfer we will have dangling pointer from

Coordinator pointing to the empty memory location previously acquired by

Non_Confined_Coordinator.

 As per the above point, migration of Non_Confined_Coordinator

will create dangling pointer. Hence in Jmigrate during migration the pointer

from Coordinator will also gets updated by permitting it to point to the new

location of the Non_Confined_Coordinator within the Ounda_Center.

This reference is termed as known reference, since it is already known in

the previous originator owner Elvis_Center and hence part of the software

design.

75

5.10 CONCLUSION

 This chapter has presented the Jmigrate (Jm) language and how we

are programming in Jmigrate are seen. We have also presented the syntax and

types of the programming language Jm.

 This chapter shows how we program the class relationship,

dominant owners and aggregate owners using Jmigrate. We have also

analyzed the side-effects that will occur due to object migration and the

solution provided in the Jmigrate using various examples and Jmigrate codes.

76

CHAPTER 6

FORMAL DEFINITIONS

6.1 INTRODUCTION

 The Jmigrate (Jm) language model is implemented using

Featherweight Java (FJ) (Atsushi et al 2001). We shall discuss the syntax of

the language in the following section and proceed with semantics and the type

system of our language Jmigrate.

6.2 SYNTAX

 Figure 6.1 presents the syntax of our language Jmigrate. The

metavariables I, J, G and Z range over the owners names; A, B, C, D, S and T

ranges over the class names; f and g range over the field names; m ranges

over method names; x, y ranges over the parameter names; e, t ranges over

terms; u, v ranges over values. CT range over class declarations, GT range

over dominant owner declarations; M and K ranges over methods and

constructor declarations; er range over certain restricted terms and er is formed

as a logical group from term e; to represent the restricted expressions that are

possible for classes between dominant ownership domain. this is a special

variable and we consider it not to be used as parameter to a method, and is

bound implicitly to every method. ξ represents the confinement property of

the object and in syntax Figure 6.1 we have represented it as a pair; where ξ .1

represents the <R> type and ξ .2 represents the <Y> type. We use the bar over

77

the names to represent the sequences of that name. As an example f is a short

hand notation for the sequence f1, f2, … , fn.

 In our language we have used extends keyword to specify the

relationship between two classes. The declaration owner G neighbor Z

introduces the dominant ownership domain named G that has neighborhood

relationship with other dominant owner called Z.

GT(G) ::= owner G neighbor Z

CT(C) ::= ξ class C extends D {ξ : fC ; M K}

ξ ::= {<R> , <Y> }

e ::= x | e.f | e.m (e) | new C (e) | C (e)

er ::= x | e.f | e.m (e) | C (e)

v ::= new C (v)

K ::= C (fC) { Super (f) ; this. f = f }

M ::= ψ B m (xB) { return e; }

Subclassing, Subtyping, and Matching

ξ .0 = ● = <R> ξ .1 ≻+ ξ .2 C ∪ ξ .2 <# C ∪ ξ .2

 B∪ ξ .1
c< C ∪ ξ . 2 B∪ ξ .2

c< C∪ ξ .2 C∪ ξ .2
c< D∪ ξ .1

 B <: C B <# D ∧ C <# D

Θ - Type environment: mapping from variables to External types

Γ - Type environment: mapping from variables to class-is- types

∆ - Type environment: mapping from variables to nonvariable types

δ - Type environment: mapping from nonvariable to nonvariable types

∆
δ - Type environment: mapping from nonvariable type to variable types

DΦ - corresponds to dominant owner to which D belongs (i.e. current owner)

Dρ - corresponds to neighborhood owenr (relative owners) of D’s owner

Figure 6.1 Syntax of Jmigrate

78

 ξ class C extends D {ξ : fC ; M K} introduces a class named C

with confinement property ξ which has the superclass D. The class C has

fields f with types C and external typesξ , a single constructor K and

methods M . The class table CTD(C) is a mapping from class names C to

class declarations CT, and the ownership table GT is a mapping from owner

names G to the owner declarations GT. By default, external type is <R>. The

relation between external type is that, <R> is highly coarse than <Y> type.

Therefore, <R> lies within the owner. Here, subclassing and subtyping are

differentiated using matching_like relation between objects. So <C used to

represent the subclassing and <: used to represent subtyping. To have proper

typing relation that represent either subtyping or subclassing the

matching_like relation (<#) is used. The union (∪) symbol represent the

combination of class name and the external type. The lookup functions are

given in Figure 6.2, Figure 6.3.

Field Lookup

GT(G) = owner G neighbor Z

CT(D) = ξ class D extends G {ξ : gD ; ψ .1 M K}

CT(C) = ξ class C extends D {ξ : fC ; ψ .1 M K}

fields(C) = fC ; gD ∈ ξ .2 fields(D) = gD

Method Lookup

GT(G) = owner G neighbor Z

CT(D) = ξ class D extends G {ξ : gD ; ψ .2
1M K}

B m(xB) {return e;} ∈
1M

methods(G) =
1M

mtype(m,G) = (D, B→ B, this)

Figure 6.2 Field and Method Lookup in Jmigrate

79

Method Type Lookup

CT(C) = ξ class C extends D {ξ : fC ; ψ .1 M K}

B m(xB) {return e;} ∈ M

mtype(m, C) = (C, B→ B, thisC)

∆
owner (C) =

∆
owner (D) = G

CT(D) = ξ class D extends G {ξ : gD ;ψ M K }

CT(C) = ξ class C extends D {ξ : fC ;ψ .1
1M K}

m not defined in
1M

mtype(m, C) = mtype(m, D)

But IF m defined in ψ .2 M

mtype(m, C) = mtype(m, D) = mtype(m, G)

CT(D) = ξ class D extends Z {ξ : gD ;ψ M K }

∆
owner (C) = G))((Cowner

∆
ℜ

δ
= Z

CT(C) = ξ class C extends B {ξ : fC ;ψ .1
1M K}

migrate(new C(v0), G, Z, ξ .2)

m not defined in
1M and m defined in ψ .2 M

mtype(m, C) = mtype(m, Z)

Figure 6.3 Method Type Lookup in Jmigrate

 The auxiliary definitions are listed in the Figure 6.4. The definition

method(G) returns the method present in the owner G, and the mtype returns

the type signature of a method. Here in order to have a clear idea about this

(thisD) we have included this definition along with the methods signature.

M-DELEGATION

M-MIGRATION

80

Method Body Lookup

CT(C) = ξ class C extends D {ξ : fC ; ψ M K}

B m(xB) {return e;} ∈ M

mbody(m, C) = (x , e)

CT(C) = class C extends D {ξ : fC ; ψ M K}

M not defined in M

mbody(m, C) = mbody(m, D)

CT(D) = ξ class D extends G {ξ : gD ; ψ .1
1M ψ .2

2M }

CT(C) = ξ class C extends D {ξ : fC ;ψ M K}

m not defined in M ∧ B m(xB) {return e;} ∈
2M

mbody(m, C) = mbody(m, D) = mbody(m, G)

[where mbody(m, G) = mbody(m, D)]

CT(D) = ξ class D extends G {ξ : gD ; ψ .1
1M ψ .2

2M }

CT(C) = ξ class C extends D {ξ : fC ;ψ M K}

δ,∆
visible (Z, G) migrate(new C(v0), G, Z, ξ .2) m not defined in M

mbody(m, v0) = mbody(m, Z)

Figure 6.4 Auxiliary Definition in Jmigrate

 The predicate override is overriding normal methods present in the

superclass. In override, this in the parameter used to specify this pointer of the

method after overriding. It is used to specify the combined usage of

delegation and inheritance. Observe that thisD says, whenever this method is

invoked it depends on fields of the class D; while the similar thing with this,

which depends on the contents in migrated owner. By the rule of Dobj during

delegation the objects clone will be there in the migrated owner, which says a

secure delegation occurs here.

81

6.3 EVALUATION

 Jmigrate has a call-by-value semantics (Figure 6.5). The three

evaluation rules E-NFIELD, E-NCAST, E-NINVK represents the basic

evaluation rules. The evaluation rules deal with field access, type casting and

the method invocation by an object. The object can externally access the

fields only when it belongs to ξ .2 and similarly method invocation is possible

only when the method belongs to normal functional property.

Valid Method Overriding

mtype(m, C)= (C , B→ B, thisC)⇒ (D <: C , C0 = B ∧
0C = B)

override(m, C0, 0C → C0, thisD)

mtype(m, G) = (D, B→ B, this) ⇒ (C <# D, C0 = B,
0C = B)

override(m, D,
0C → C0, this)

fields(C0) = fC

new C0(v).fi → vi 2.ξ∈⇒ if

C <: D

(D) new C(v) → new C(v)

mbody(m, C) = (x , e)

1.
)(

,)().(ψ∈⇒






→ me
this

vCnew
x

uumvCnew
C

 e → e’ e → e’ e → e’

 new C(e) → new C(e’) (C)e → (C)e’ e.f → e’.f

 e → e’ e → e’

e.m(e) → e’. m(e) e0.m(e) → e0.m(e’)

migrate(v0, G, Z, ξ) where v0 = C ∪ ξ .2

Figure 6.5 Evaluations Rules in Jmigrate

E-NFIELD

E-NCAST

E-NINVK

82

6.4 VISIBILITY RULE

 The visibility rule shown in Figure 6.6, Figure 6.7 and Figure 6.8 is

the foundation of the Jmigrate in determining the owners, types and terms that

are visible to the particular class for using it within the class.

Basic Rules

)(Towner
∆ ; determines the owner of type T

))((Towner
∆

ℜ
δ ; determines the neighborhood owners

∆├ T OK ; type T is OK

∆
visible (O, D) ; owner O is visible in class D

δ,∆
visible (Õ, O) ; relative owners Õ is visible to owner O

δ
equal (Ỏ, Ő) ; both owners Ỏ and Ő are equal

∆
visible (T, D) ; type T is visible in class D

∆ΓΘ ;; ├ visible (e, D) ; expression e is visible in class D

∆ΓΘ ;; ├ Nvisible (e, D) ; expression e is not visible in class D

δ;;; ∆ΓΘ ├
∆

δ
visible (er, D) ; er is visible in class D

δ;;; ∆ΓΘ ├
∆

δ
visible (T, D) ; type T is visible in class D

Indirect Visibility

δ;;; ∆ΓΘ ├
∆δ

ivisible (e, D) ; expression e is visible for class D

δ;;; ∆ΓΘ ├
∆δ

ivisible (T, D) ; type T is visible for class D

∆
∆ΓΘ δδ ;;;; ├ Nivisible (e, D) ; expression e is not visible in class D

Figure 6.6 Judgments in Jmigrate

 Visibility rules divided into three sets of rules: determining

ownership visibility, type visibility and term visibility. Here, DΦ function is

used to return the owner of the class D; and the function
Dρ that returns the

83

relative owners of the owner of the class D. The owner visibility checks that

the given owner is either the owner of the current class, representing the

ownership; and checks that the relative owners related to the current owner of

the current class determining the related ownership domain. The type

visibility allows the usage of types based on the owner visibility. The type

visibility rule is also applicable between the owners, stated through the

predicate ivisible. The indirect visibility of the type represents through the

delegation relation. Here the type refers to the class name and are not

referring the external types.

Owner Visibility

D
(,) visible O D O

∆
= ∈ Φ

{ }

' (')

()
() '

(') '{ }

J J J

if
where owners D

CT D class D extends J

and GT J owner J D

ξ

∈ ∧ ℜ 
 
 

=  
= 

 = 

…

… …

DDODOvisible ρ
δ

∧Φ∈=
∆

),(, where,

{ }

' (')

()
() '

(') ' '{ }

J J J

if
owners D

CT D class D extends J

and GT J owner J neighbor I D

ξ

∈ ∧ ℜ 
 
 

=  
= 

 = 

…

… …

'

()

() '{ }

I I

if

GT owner neighbor I

 ∈

 
ℜ Φ =  

 
Φ = Φ …

Figure 6.7 Owner Visibility

84

 Term visibility rules states that for each subexpression, the rules

determine whether the type of that subexpression is visible according to the

type visibility rules. Extending term visibility between owners through

delegation relation gives indirect visibility. The predicate Nvisible checks

whether the respective term is visible for a particular class based on the

external type. Similarly, the predicate Nivisible checks term visibility between

the owners.

 During object migration the terms present in neighbors owner may

be visible to the class present in other owner.

 The predicate δ;;; ∆ΓΘ ├
∆δ

visible (er, D) determines the term

visibility. Here we have specified the restricted term visibility because new is

not available after object migrated to the neighbor owner.

Type Visibility

)),((),(DTownervisibleDTvisible
∆∆∆

=

∆
Γ δδ ;; ├ =

∆
),(DTivisible

∆
∆Γ δ;; ├)))(),(((TownerDownerequal

∆∆
ℜ

δδ

Term Visibility

∆ΓΘ ;; ├ x : T ∪ E),(DTvisible
∆

∆ΓΘ ;; ├ 2.),(ξ∈⇒ EDxvisible

If D ∪ ξ .1 then ∆ΓΘ ;; ├ ξ∈⇒ EDxvisible),(

∆ΓΘ ;; ├ x’ : T ∪ E),(DTvisible
∆

∆ΓΘ ;; ├ ⇒),'(DxNvisible (1.ξ∈E) ∧ (D ∪ E where E ∈ ξ .2)

Figure 6.8 Type and Term Visibility in Jmigrate (Continued)

V - NVAR

V - VAR

85

∆ΓΘ ;; ├),(Devisible ∆ΓΘ ;; ├ e.fi : T ∪ E’

∆ΓΘ ;; ├ e.fj : T ∪ E’’),(DTvisible
∆

 i ≠ j E’, E’’∈E

If D ∪ ξ .1 then ∆ΓΘ ;; ├ ξ∈⇒ EDfevisible),.(

If D ∪ ξ .2 then ∆ΓΘ ;; ├ ⇒),.(Dfevisible i
E’ ∈ ξ .2

and ∆ΓΘ ;; ├ ⇒),.(DfeNvisible j
E’’ ∈ ξ .1

∆ΓΘ ;; ├ e. m(e) : T∪ E),(DTvisible
∆

∆ΓΘ ;; ├),(Devisible ∆ΓΘ ;; ├),(Devisible

∆ΓΘ ;; ├ ETemeDemevisible ∪⇒ :)(.)),(.(, where E ∈ ξ .2

and If D ∪ ξ .1 then ∆ΓΘ ;; ├ ξ∈⇒ EDemevisible)),(.(

∆ΓΘ ;; ├),(Devisible),(DTvisible
∆

 T = T∪ E

∆ΓΘ ;; ├ ⇒),)((DeTnewvisible ETe ∪: , If E∈ ξ .2

 Else 1.: ξ∪Te , If E∈ ξ .1

∆ΓΘ ;; ├),(Devisible),(DTvisible
∆

∆ΓΘ ;; ├ ⇒),)((DeTvisible

















∈∧∪

∨

∈∧∪

1.1._:

2._:

ξξ

ξ

Te

ETe

Figure 6.8 Type and Term Visibility in Jmigrate (Continued)

V - MINVK

V - FIELDS

V - CAST

V - NEW

86

∆
ΓΘ δδ ;;; ├ y: S∪ E δ;;; ∆ΓΘ ├

∆
δ

ivisible (S, D)

∆
ΓΘ δδ ;;; ├ x: S∪ E

δ;;; ∆ΓΘ ├
∆

δ
ivisible (y, D) ⇒ (E∈ ξ .2)

∆
ΓΘ δδ ;;; ├),(DxNivisible ⇒ (E∈ ξ .1)

∆ΓΘ ;; ├ e.m(e) : S∪ E δ;;; ∆ΓΘ ├
∆

δ
ivisible (S, D)

∆ΓΘ ;; ├),(Devisible ∆ΓΘ ;; ├),(Devisible

∆ΓΘ ;; ├)),(.(DemeNvisible))(),_((;| _ Downerownerequalwherethisthise D δ
=

δ;;; ∆ΓΘ ├)'',(),()),(.(11 euSmmbodySemevisible =
∆δ

δ;;; ∆ΓΘ ├ 2.:)(.'';)),(.(1
1

1
11 ψ

δ
∪∧





∧

∆

Semee
e

this

u
e

whereDemeivisible fp

Figure 6.8 Type and Term Visibility in Jmigrate

 The VR–INVK rule specifies the reference relation between the

owners. The Figure 6.9 says about the class and method type. The IN-

METHOD and DEL-METHOD specifies functions visibility within and

between owners respectively. Similarly, the CLASS+I and CLASS+D says

about class visibility within and between owners respectively.

VR - VAR

VR - INVK

87

CthisBx :,:;;∆Γ ├
0 0

:t D E∪ ∆├
0,, DBB

),(),(0 CBvisibleCtvisible
∆∆

),(CBvisible
∆

CinOKtreturnxBmB };{)(0

fpthisthisBx :,:,;;; ∆Γ
∆

δδ ├ EDt ∪00 : ∆
∆
;;δδ ├ 0,, DBB

),(CBivisible
∆

),(),(0 CDivisibleCBivisible
∆

0
() { ;}B m B x return t OK in C

∆├ S <: N OK
∆

visible (N, C) ∆├ N, N , T OK

M OK in C
∆

visible (T , C)
∆

visible (N , C)
∆

visible (S , C)

Class C extends N { }OKMKfS ψξ ;:

δ;;; ∆ΓΘ ├
∆

δ
ivisible (T , N) δ;;; ∆ΓΘ ├

∆
δ

ivisible (T , C)

∆├ N, N OK
∆

∆ δδ ;; ├ S ,T OK

δ;;; ∆ΓΘ ├
∆

δ
visible (S ,C)

∆
visible (N , C)

∆
visible (N, C)

Class C extends N { }OKMKfS ψξ ;:

Figure 6.9 Class and Method Type in Jmigrate

6.5 PROPERTIES

 In this section, the properties of the language Jmigrate, and the

nature of confined objects based on ownership criteria are discussed. The

proof says that during execution, all expression result in an instance of a class

is visible within the current context, and also after the migration, the visible

portion for the object will be reversed but will be provided through

delegation.

DEL-METHOD

CLASS+I

IN-METHOD

CLASS+D

88

LEMMA 1. Subject reduction

 If ∆Γ ; ├ ECe ∪: and 'ee → then ∆Γ ; ├ ECe ∪':' for some C’<# C

LEMMA 2. Hierarchical Objects-Ownership Invariance

 If ∆├ S <: T; ∆├ T <: G then GTownerSowner ==
∆∆

)()(where G is

the dominant ownership domain.

 Proof. By induction on the depth of the subtype hierarchy and by

the property of the language P1 every class must be either within some space

(global or dominant ownership domain). By CLASS + I a class extends from

a ownership domain and all the subclasses of this class will have the same

owner which is the ownership domain.

LEMMA 3. Ad hoc objects-Ownership Invariance

 If GTowner =
∆

)(and),(STvisible
∆

, mtype (m, S) = mtype (m, G) where

mtype(m,G) = (T, BB → ,this) then GTownerSowner ==
∆∆

)()(∧ ∆├ S <# T

 Proof. By induction on the relationship between ad hoc objects

within the ownership domain. Where T provides the method required by S

indirectly through finger function. This implies that there is a delegation

relation between S and T through owner G. hence there is no subclassing but

subtyping relation between them. By CLASS+D a class have visibility of type

in other domain which implies movement of object of the particular type from

that related domain to its native..

LEMMA 4. Ownership Invariance in Object Migration

 If ∆Γ; ├ 1.: ξ∪Su , ∆Γ; ├ 2.: ξ∪Sv , ∆├ S <# T ;where OSowner =
∆

)(

∧ ')(OTowner =
∆

 and),'(, OOvisible
δ∆

is the initial location of the types and ,If

89

move(v, O’, E) ⇒ 'vv → for 2.ξ∈E then
∆

Γ δδ ;; ├ ')(OSowner =
∆

 and

OSowner =
∆

)(

 Proof. By induction based on the objects migration between

ownership domain saying that objects moving between domains will also

carry the class-is-type property but prevails based on the objects type for its

rights determination. It also implies that the persistence of the class within the

previous owner helps in creation of further objects from the same class.

THEOREM 1. Confinement Invariant (Inside Owner)

 Let e be a subexpression appearing in the body of a IN-METHOD

of a well formed class C defined by CLASS+I. Then: If)(*
eDnewe → , then

),(CDvisible
∆

.

 Proof. Since the class is well formed, its methods are also well

formed. In the environment ∆Γ; ├ e:T and Γ├),(Cevisible
∆

holds, which implies

that),(CTvisible
∆

 and hence)),((CTownervisible
∆∆

. Then by subject reduction

property, there is a T’ such that ∆Γ; ├ new D(e): T’, where ∆Γ; ├ T’ <# T

means there is another possibility as ∆Γ; ├T’<: T. Specifically Ad hoc

Objects-Ownership Invariance possibly has Hierarchical Objects-Ownership

Invariance in it. Therefore by LEMMA 2 and LEMMA 3

)(Downer
∆

=)(Towner
∆

which implies)),((CDownervisible
∆∆

and hence),(CDvisible
∆

. □

THEOREM 2. Confinement Invariant (Between Owners in Object

Migration)

 Let e be a subexpression appearing in the body of a DEL-

METHOD of a well formed class C defined by CLASS+D. Then: If

)(*
eDnewe → , then),(CDvisible

∆
.

90

 Proof. Since the class is well formed, its methods are also well

formed. In the environment
∆

∆Γ δδ ;;; ├er:T and δ;;; ∆ΓΘ ├),(Cevisible r
∆

δ holds,

which implies that δ;;; ∆ΓΘ ├),(CTvisible
∆δ

 and hence

))()),(((, CownerTownervisible
∆∆

ℜ
δδ

. Then by subject reduction property, there is a T’

such that ∆Γ; ├ new D(e): T’, where ∆Γ; ├ T’ <# T. Therefore by Ad hoc

Objects-Ownership Invariance)(Downer
∆

=)(Towner
∆

which implies

)),((CDownervisible
∆∆

and hence),(CDvisible
∆

. □

THEOREM 3. Confinement Invariant (After Object Migration)

 Let e be a subexpression appearing in the body of a DEL-

METHOD of a well formed class C defined by CLASS+D. Then: If

)(*
eDnewe → , then),(CDvisible

∆
and If),(DSvisible

∆
and 'vv → for 2.ξ∪∈ DE

then δ;;; ∆ΓΘ ├),(DSivisible
∆δ

.

 Proof. Since the class is well formed, its methods are also well

formed. In the environment
∆

∆Γ δδ ;;; ├e:T and δ;;; ∆ΓΘ ├),(Ceivisible
∆δ

holds,

which implies that δ;;; ∆ΓΘ ├),(CTivisible
∆

δ
 and in the environment ∆Γ; ├ S OK

and ∆Γ; ├),(DSvisible
∆

 with))()),(((, CownerTownervisible
∆∆

ℜ
δδ

. Then by

subject reduction property, there is a T’ such that ∆Γ; ├ new D(e): T’ E∪ ,

where ∆Γ ; ├ T’ <# T. Therefore by ownership variance

)(Downer
∆

=)(Towner
∆

 for some 2.: ξ∪Dv and)(Downer
∆

≠)(Towner
∆

for some v :

D E∪ therefore according to the language properties P5, which implies that

δ;;; ∆ΓΘ ├),(DSivisible
∆δ

. Finally based on ownership variance which implies

∆Γ; ├),(CDvisible
∆

)),((CDownervisible
∆∆

and hence),(CDvisible
∆

. □

91

CHAPTER 7

CONCLUSIONS

7.1 PROPOSED WORK

 In this thesis, we propose ownership types as the encapsulation

policy that will be useful to predict the object encapsulation statically and

facilitate local reasoning about program correctness in object-oriented

languages, and the ownership transfer (anticipated and un-anticipated) that is

helpful in designing the system for future changes.

7.2 CONTRIBUTIONS

 Our proposed model, namely Ownership Transfer Model (OTM)

exploits this combination and shows how to achieve the flexibility of

prototype-based systems without abandoning the advantages of the class-

based paradigm. However, as we propose to combine the two advantages, we

have shown that the method is not out of hazards. Problems arising out of

such combination have been discussed and solutions in OTM have been

proposed. The evidence of safety in OTM has been illustrated using a

language called Jmigrate (Jm), which is based on the Featherweight Java (FJ).

7.3 FUTURE WORK

 As a future enhancement, we are planning to add delegation and

subtype mechanism which will help us to relate objects after migration. Thus

delegation will help us to modify the inheritance hierarchy for an object

dynamically. Secure delegation with ownership encapsulation will help us to

have a better system permitting dynamic evolution and secure static typing.

92

REFERENCES

1. Abadi M. and Cardelli L. (1996a), ‘A Theory of Objects’, Springer-

Verlag.

2. Abadi M. and Cardelli L. (1996b), ‘On Subtyping and Matching’,

ACM Transactions on Programming Languages and Systems

(TOPLAS), ACM Press, Vol. 18(4), pp. 401-423.

3. Aldrich, Kastadinov V. and Chambers C. (2002), ‘Alias annotations

for program understanding’, in Proceedings of the 17th ACM

SIGPLAN conference, Object Oriented Programming Systems

Languages and Applications (OOPSLA), ACM Press, Vol. 37(11),

pp. 311-330.

4. Almeida P.S. (1997), ‘Balloon Types: Controlling Sharing of State in

Data Types’, in Proceedings of European Conference on Object-

Oriented Programming (ECOOP), Springer-Verlag, pp. 32-59.

5. Ancona D., Anderson C., Damiani F., Drossopoulou S, Giannini P. and

Zucca E. (2001), ‘An Effective Translation of Fickle into Java’, in

Proceedings of the 7th Italian Conference on Theoretical Computer

Science, Lecture Notes In Computer Science (LNCS), Springer-

Verlag,Vol. 2202, pp. 215-234.

6. Banerjee A. and Naumann D.A. (2005), State Based Ownership,

Reentrance, and Encapsulation, in Proceedings of European

Conference on Object-Oriented Programming (ECOOP), Lecture

Notes in Computer Science (LNCS), Springer Berlin/Heidelberg,

Vol. 3586, pp. 387-411.

7. Bardou D. and Dony C. (1996), ‘Split Objects: a Disciplined Use of

Delegation within Objects’, in Proceedings of the 11th ACM

SIGPLAN conference on Object-oriented programming, systems,

languages, and applications (OOPSLA), pp. 122-137.

8. Bieman J.M. and Kang B.K. (1995), ‘Cohesion and reuse in an object-

oriented system’, in Proceedings of ACM Symposium on Software

Reusability (SSR), ACM Press, pp. 259-262.

93

9. Blaschek G. (1994), ‘Object-Oriented Programming with Prototypes’,

Springer-Verlag.

10. Bornat R., Calcagno C., O’Hearn P. and Parkinson M. (2005),

‘Permission Accounting in Separation Logic’, in Proceedings of the

32nd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (POPL), ACM Press, pp. 259-270.

11. Borning A.H. (1986), ‘Classes Versus Prototypes in Object-Oriented

Languages’, in Proceedings of ACM/IEEE Fall Joint Computer

Conference, IEEE Computer Society Press, pp. 36-40.

12. Boyapati C., Lee R. and Rinard M. (2002), ‘Ownership Types for Safe

Programming: Preventing Data Races and Deadlocks’, in Proceedings

of the 17th ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications (OOPSLA), ACM

Press, pp. 211-230.

13. Boyapati C., Liskov B. and Shrira L. (2003), ‘Ownership Types for

Object Encapsulation’, in ACM SIGPLAN Notices, ACM Press,

Vol. 38(1), pp. 213-223.

14. Boyapati C. and Rinard M.C. (2004), ‘Safejava: a unified type system

for safe programming’, Massachusetts Institute of Technology.

15. Boyland J. and Retert W. (2005), ‘Connecting Effects and Uniqueness

with Adoption’, in Proceedings of the 32nd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages (POPL), ACM

Press, pp. 283-295.

16. Bruce K. (1996), ‘Typing in object-oriented languages: Achieving

expressibility and safety’, Technical Report, Williams College.

17. Bruce K., Cardelli L., Castagna G., The Hopkins Objects Group,

Leavens G.T. and Pierce B.C. (1995a), ‘On Binary Methods’, in

Theory and Practice of Object Systems, John Wiley & Sons Inc,

Vol. 1(3), pp. 221-242.

18. Bruce K., Schuett A. and Gent R.V. (1995b), ‘PolyTOIL: A type-safe

polymorphic object-oriented language’, in Proceedings of

European Conference on Object-Oriented Programming (ECOOP),

Lecture Notes in Computer Science (LNCS), Springer-Verlag,

Vol. 952, pp. 27-51.

94

19. Cameron N.R., Drossopoulou S., Noble J. and Smith M.J. (2007),

‘Multiple Ownership’, in Proceedings of the 22nd annual ACM

SIGPLAN conference on Object-oriented programming systems and

applications (OOPSLA), ACM Press, pp. 441-460.

20. Cardelli L. and Wegner P. (1985), ‘On understanding types, data

abstraction, and polymorphism’, ACM Computing Surveys, Vol. 17(4),

pp. 471-522.

21. Chambers C. (1993), ‘The Cecil language: Specification and rationale’,

Technical Report tr 93-03-05, Department of Computer Science and

Engineering, University of Washington.

22. Chambers C., Ungar D., Chang B.W. and Holzle U. (1991), ‘Parents

are Shared Parts of Objects: Inheritance and Encapsulation in SELF’,

in Journal on Lisp and Symbolic Computation, Kluwer Academic

Publishers, Vol. 4(3), pp. 207-222.

23. Clarke D.G. (2001), ‘Object Ownership and Containment’, PhD

Thesis, University of New South Wales.

24. Clarke D.G. and Drossopoulou S. (2002), ‘Ownership, Encapsulation

and the Disjointness of Type and Effect’, in Proceedings of the

17th ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications (OOPSLA), ACM Press,

pp. 292-310.

25. Clarke D.G. and Wrigstsad T. (2003), ‘External Uniqueness is Unique

Enough’, in Proceedings of European Conference on Object-Oriented

Programming (ECOOP), Springer Berlin/Heidelbergm, Vol. 2743,

pp. 59-67.

26. Clarke D.G., Potter J., and Noble J. (1998), ‘Ownership Types for

Flexible Alias Protection’, in Proceedings of the 13th ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and

applications (OOPSLA), ACM Press, pp. 48-64.

27. Danforth S. and Tomlinson C. (1988), ‘Type theories and object

oriented programming’, ACM Computing Surveys, Vol. 20(1), pp. 29-72.

28. Dietl W. and Müller P. (2005), ‘Universes: Lightweight Ownership for

JML’, in Journal of Object Technology (JOT), Vol. 4(8), pp. 5-32.

29. Dony C., Malenfant J. and Cointe P. (1992), ‘Prototype-Based

Languages: From a New Taxonomy to Con-structive Proposals

95

and Their Validation’, in ACM SIGPLAN Notices, ACM Press,

Vol. 27(10), pp. 201-217.

30. Drossopoulou S., Damiani F., Ciancaglini M.D. and Giannini P.

(2001), ‘Fickle: Dynamic Object Re-classification’, in Proceedings of

the 15th European Conference on Object-Oriented Programming

(ECOOP), Lecture Notes In Computer Science (LNCS), Springer-

Verlag, Vol. 2072, pp. 130-149.

31. Fisher K. and Mitchell J.C. (1994), ‘Notes on typed object-oriented

programming’, in Proceedings of the International Conference on

Theoretical Aspects of Computer Software (TACS), Lecture Notes In

Computer Science, Springer-Verlag, Vol. 789, pp. 844-885 .

32. Fisher K. and Mitchell J.C. (1995), ‘A delegation-based object calculus

with subtyping’, in Proceedings of the 10th International Symposium

on Fundamentals of Computation Theory (FCT), Lecture Notes In

Computer Science, Springer-Verlag, Vol. 965, pp. 42-61.

33. Gamma E., Helm R., Johnson R. and Vlissides J. (1994), ‘Design

Patterns: Elements of Object-Oriented Software Architecture’,

Addison-Wesley Publishing Company, Reading, Massachusetts.

34. Ghelli G. and Orsini R. (1991), ‘Types and subtypes as partial

equivalence relations’, in Maurizio Lenzerini, Daniele Nardi and Maria

Simi, editors, Inheritance Hierarchies in Knowledge Representation

and Programming Languages, Wiley, pp. 191-210.

35. Gordon D. and Noble J. (2007), ‘Dynamic Ownership in a Dynamic

Language’, in Proceedings of symposium on Dynamic languages

(DLS), ACM Press, pp. 41-52.

36. Gordon D. (2007), ‘Encapsulation enforcement with dynamic

ownership’, Master's thesis, Victoria University of Wellington.

37. Hauck F.J. (1993a), ‘Inheritance Modeled with Explicit Bindings: An

Approach to Typed Inheritance’, in Proceedings of the eighth annual

conference on Object-oriented programming systems, languages, and

applications (OOPSLA), ACM Press, pp. 231-239.

38. Hauck F.J. (1993b), ‘Class-Based Inheritance is Not a Basic Concept’,

in Friedrich-Alexander-University Erlangen-Numberg, Computer

Science Department, IMMD IV, Technical Report TR-14-6-93.

96

39. Hogg J. (1991), ‘Islands: aliasing protection in object-oriented

languages’, in ACM SIGPLAN Notices, ACM Press, Vol. 26(11),

pp. 271-285.

40. Hogg J., Lea D., Wills A., deChampeaux D. and Holt R. (1992), ‘The

Geneva convention on the treatment of object aliasing’, in ACM

SIGPLAN OOPS Messenger, ACM Press, Vol.3(2), pp. 11-16.

41. Hutchinson N.C. (1987), ‘EMERALD: An object-based language for

distributed programming’, PhD thesis, Department of Computer

Science and Engineering, University of Washington, Seattle, WA.

42. Igarashi A., Pierce B.C. and Wadler P. (2001), ‘Featherweight Java: a

minimal core calculus for Java and GJ’, in ACM Transactions on

Programming Languages and Systems (TOPLAS), ACM Press,

Vol. 23(3), pp. 396-450.

43. Katiyar D., Luckham D. and Mitchell J. (1994), ‘A type system for

prototyping languages’, in Proceedings of the 21st ACM SIGPLAN-

SIGACT symposium on Principles of programming languages (POPL),

ACM Press, pp. 138-150.

44. Kent S. and Maung I. (1995), ‘Encapsulation and aggregation’, in

Proceedings of Technology of Object-Oriented Languages and

Systems (TOOLS), Prentice Hall.

45. Kniesel G. (1998), ‘Delegation for Java: API or Language Extension?’,

Technical Report IAI-TR-98-5.

46. Kniesel G. (1999), ‘Type-Safe Delegation for Run-Time Component

Adaptation’, In Proceedings of the 13th European Conference on

Object-Oriented Programming (ECOOP), Lecture Notes In Computer

Science (LNCS), Springer-Verlag , Vol. 1628, pp. 351-366.

47. Kniesel G. (2000), ‘Dynamic Object-Based Inheritance with

Subtyping’, Ph.D. Thesis, Universitat Bonn, Institut fur Informatik III,

D-5311 Bonn.

48. Leino K.R.M. and Müller P. (2005), ‘Modular verification of static

class invariants’, in FM 2005: Formal Methods, International

Symposium of Formal Methods Europe, John Fitzgerald, Ian J. Hayes

and Andrzej Tarlecki (eds.), Lecture Notes in Computer Science

(LNCS), Springer, Vol. 3582, pp. 26-42.

97

49. Leino K.R.M. and Muller P. (2004), ‘Object invariants in dynamic

contexts’, in Proceedings of European Conference on Object-Oriented

Programming (ECOOP), Lecture Notes in Computer Science (LNCS),

Springer-Verlag, Vol. 3086, pp. 491-516.

50. Lieberman H. (1986), ‘Using Prototypical Objects to Implement

Shared Behavior in Object-Oriented Systems’, in proceedings on

Object-oriented programming systems, languages and applications

(OOPSLA), ACM Press, pp. 214-223.

51. Litvinov V. (2003), ‘Constraint-Bounded Polymorphism: an

Expressive and Practical Type System for Object-Oriented

Languages’, Ph.D. thesis, Department of Computer Science and

Engineering, University of Washington, Seattle, WA.

52. Lu Y. and Potter J. (2006), ‘Protecting Representation with Effect

Encapsulation’, in Conference record of the 33rd ACM SIGPLAN-

SIGACT symposium on Principles of programming languages (POPL),

ACM Press, pp. 359-371.

53. Meyer B. (1992), ‘Eiffel: the language’, Prentice-Hall Object-Oriented

Series.

54. Meyers S. (1996), ‘More Effective C++’, Addison-Wesley.

55. Minsky N.H. (1996), ‘Towards Alias-Free Pointers’, in Proceedings of

the 10th European Conference on Object-Oriented Programming

(ECOOP), Lecture Notes In Computer Science (LNCS), Springer-

Verlag, Vol. 1098, pp. 189-209.

56. Muller P. and Poetzsch-Heffter A. (1999), ‘Universes: A type system

for controlling representation exposure’, in Programming Languages

and Fundamentals of Programming, Poetzsch-Heffter A. and Meyer J.

(eds.), Fer-nuiversitat Hagen, Technical Report 263.

57. Muller P. and Rudich A. (2007), ‘Ownership Transfer in Universe

Types’, in proceedings on Object-oriented programming systems,

languages and applications (OOPSLA), ACM Press, pp. 461-478.

58. Nierstrasz O. (1995), ‘Regular types for active objects’, In Object-

Oriented Software Composition, Prentice Hall, pp. 99-121.

59. Noble J., Vitek J. and Potter J. (1998), ‘Flexible Alias Protection’, in

Proceedings of the 12th European Conference on Object-Oriented

98

Programming (ECOOP), Lecture Notes In Computer Science (LNCS),

Vol. 1445, pp. 158-185.

60. Palsberg J. and Schwartzbach M.I. (1992), ‘Three discussions on

object-oriented typing’, ACM OOPS Messenger, Vol. 3(2), pp. 31-38.

61. Palsberg J. and Schwartzbach M.I. (1994), ‘Object-Oriented Type

Systems’, John Wiley.

62. Pernici B. (1989), ‘Objects with roles’, Technical Report, Centre

Universitaire d’Informatique, University of Geneva.

63. Pierce B.C. and Turner D.N. (1994), ‘Simple type-theoretic

foundations for object-oriented programming’, Journal of Functional

Programming, Vol. 4(2), pp. 207-247.

64. Potanin A., Noble J. and Robert Biddle (2004), ‘Generic Ownership:

Practical Ownership Control in Programming Languages’, in

Companion to the 19th annual ACM SIGPLAN conference on Object-

oriented programming systems, languages, and applications

(OOPSLA), ACM Press, pp. 50-51.

65. Potanin A., Noble J., Clarke D.G. and Biddle R. (2006),

‘Featherweight Generic Confinement’, in Journal of Functional

Programming, Cambridge University Press, Vol. 16(6), pp. 793-811.

66. PradeepKumar D.S. and Saswati Mukherjee (2006), ‘Modal Logic and

Ownership Types: Uniting Three Worlds’, in Doctoral Symposium

Proceedings of OOPSLA, ACM Press.

67. Richardson J. and Schwarz P. (1991), ‘Aspects: Extending objects to

support multiple, independent roles’, In Clifford J. and King R. (eds.),

Proceedings of the ACM SIGMOD International Conference on

Management of Data, ACM Press, pp. 298-307.

68. Riecke J.G. and Stone C.A. (2002), ‘Privacy via Subsumption’,

in Information and Computation, Academic Press, Inc, Vol. 172(1),

pp. 2-28.

69. Scharli N., Black A.P. and Ducasse S. (2004), ‘Object-oriented
Encapsulation for Dynamically Typed Languages’, in Proceedings of
the 19th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (OOPSLA), ACM
Press, pp. 130-149.

99

70. Sciore E. (1989), ‘Object Specialization’, in ACM Transactions on
Information Systems (TOIS), ACM Press, Vol. 7(2), pp. 103-122.

71. Snyder A. (1986), ‘Encapsulation and Inheritance in Object-Oriented
Programming Languages’, in proceedings on Object-oriented
programming systems, languages and applications (OOPSLA), ACM
Press, pp. 38-45.

72. Stein L.A. (1987), ‘Delegation Is Inheritance’, in proceedings on
Object-oriented programming systems, languages and applications
(OOPSLA), ACM Press, pp. 138-146.

73. Stein L.A., Lieberman H. and Ungar D. (1988), ‘A Shared View of
Sharing: The Treaty of Orlando’, in Object-oriented concepts,
databases, and applications, ACM Press, pp. 31-48.

74. Stevens W., Myers G. and Constantine L. (1974), ‘Structured Design’,
in IBM Systems Journal, Vol. 13(2), pp. 115-139.

75. Taivalsaari A. (1996), ‘On the notion of inheritance’, ACM Computing
Surveys, Vol. 28(3), pp. 438-479.

76. Tamai T., Ubayashi N. and Ichiyama R. (2005), ‘An Adaptive Object
Model with Dynamic Role Binding’, in Proceedings of the 27th
International Conference on Software Engineering (ICSE), ACM
Press, pp. 166-175.

77. Ungar D. and Smith R.B. (1987), ‘Self: The power of simplicity’, in
Conference proceedings on Object-oriented programming systems,
languages and applications (OOPSLA), ACM Press, pp. 227-242.

78. Vitek J. and Bokowski B. (1999), ‘Confined Types’, in Proceedings of
the 14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA), ACM Press,
pp. 82-96.

79. Wieringa R. and de Jonge W. (1991), ‘The identification of objects and
roles’, Technical Report, Faculty of Mathematics and Computer
Science, Vrije Universiteit, De Boelelaan 1081a, 1081 HV,
Amsterdam, Netherlands.

80. Wieringa R., de Jonge W. and Spruit P. (1994), ‘Roles and dynamic

subclasses: A modal logic approach’, In Tokoro and Pareschi [TP94],

pp. 32-59.

100

81. Yu S. (2001), ‘Class-is-type is inadequate for object reuse’, in ACM

SIGPLAN Notices, ACM Press, Vol. 36(6), pp. 50-59.

82. Zendra O. and Colnet D. (1999), ‘Towards Safer Aliasing with the

Eiffel Language’, in Proceedings of the Workshop on Object-Oriented

Technology, Lecture Notes In Computer Science (LNCS); Springer-

Verlag, Vol. 1743, pp. 153-154.

83. Zhao T., Palsberg J. and Vitek J. (2003), ‘Lightweight Confinement for

Featherweight Java’, in Proceedings of the 18th annual ACM

SIGPLAN conference on Object-oriented programming, systems,

languages, and applications (OOPSLA), ACM Press, pp. 135-148.

101

LIST OF PUBLICATIONS

1. PradeepKumar D.S. (2008), ‘Alias Count Facilitate Ownership

Transfer’, in Poster Session, in ACM symposium on Object Oriented

Programming: Systems, Languages, and Applications (OOPSLA),

ACM Press.

2. PradeepKumar D.S. and Saswati Mukherjee (2007), ‘Jmigrate (Jm):

An object-oriented language with Object specialization and Ownership

transfer’, in IADIS International Conference Applied Computing,

(Accepted but not published due to financial constraint).

3. PradeepKumar D.S. and Saswati Mukherjee (2006), ‘Modal Logic

and Ownership Types: Uniting Three Worlds’, in Doctoral Symposium

Proceedings of OOPSLA, ACM Press.

102

VITAE

 D.S. Pradeep Kumar, was born on 10
th

 March 1982 at Sivakasi in

Tamil Nadu. He graduated in Computer Science Engineering in the year

2004, from Arignar Anna Institute of Science and Technology, Madras

University, Chennai, India.

 At present he is working as Research Assistant in the Project

Collaboration Research Project in Smart and Secure Environment,

Department of Computer Science and Engineering, CEG, Anna University,

Chennai. His field of interest is Programming Languages, Security, Semantics

and Logics, Language-based security, Software engineering, Dynamic objects

behavior and type evaluation, Distributed objects and Mobile objects,

environmental security analysis and behavioral monitoring, Natural Language

Processing and Semantic analysis.

 He has participated and presented one ACM Doctoral Symposium

paper and one ACM Poster paper. One paper got selected in International

Conference and not published due to financial situation.

	Pradeep_MSThesis_TITLEpage.pdf
	PradeepKumar_MSThesis.pdf

